Достоинства и недостатки геотермальной энергетики. Геотермальная энергетика — электростанции на вулкане Геотермальные электростанции их преимущества и недостатки

Данная энергия относится к альтернативным источникам. В наши дни всё чаще упоминают о возможностях получения ресурсов, которые дарит нам планета. Можно сказать, что мы живем в эпоху моды на возобновляемую энергетику. Создается множество технических решений, планов, теорий в данной области.

Он находится глубоко в земляных недрах и имеет свойства возобновления, другими словами он бесконечный. Классические ресурсы, по данным учёных начинают заканчиваться, иссякнет нефть, уголь, газ.

Несьявеллир ГеоТЭС, Исландия

Поэтому можно постепенно готовиться принимать на вооружение новые альтернативные методы добычи энергии. Под земной корой находится мощное ядро. Его температура составляет от 3000 до 6000 градусов. Перемещение литосферных плит демонстрирует его огромнейшую силу. Она проявляется в виде вулканического выплескивания магмы. В недрах происходит радиоактивный распад, побуждающий иногда к таким природным катаклизмам.


Обычно магма нагревает поверхность не выходя за её пределы. Так получаются гейзеры или теплые бассейны воды. Таким образом, можно использовать физические процессы в нужных целях для человечества.

Виды источников геотермальной энергии

Её принято разделять на два вида: гидротермальную и петротермальную энергию. Первый образуется за счет теплых источников, а второй тип – это разница температур на поверхности и в глубине земли. Объясняя своими словами, гидротермальный источник состоит из пара и горячей воды, а петротермальный спрятан глубоко под грунтом.


Карта потенциала развития геотермальной энергетики в мире

Для петротермальной энергии необходимо пробурить две скважины, одну наполнить водой, после чего произойдет процесс парения, который выйдет на поверхность. Существует три класса геотермальных районов:

  • Геотермальный – расположен вблизи континентальных плит. Градиент температуры более 80С/км. В качестве примера, итальянская коммуна Лардерелло. Там размещена электростанция
  • Полутермальный – температура 40 – 80 С/км. Это естественные водоносные пласты, состоящие из раздробленных пород. В некоторых местах Франции обогреваются таким способом здания
  • Нормальный – градиент менее 40 С/км. Представительство таких районов наиболее распространено


Они являются отличным источником для потребления. Они находятся в горной породе, на определенной глубине. Более подробно рассмотрим классификацию:

  • Эпитермальные – температура от 50 до 90 с
  • Мезотермальные – 100 – 120 с
  • Гипотермальные – более 200 с

Данные виды состоят из разного химического состава. В зависимости от него, можно использовать воды для различных целей. Например, в производстве электроэнергии, теплообеспечении (тепловые трассы), сырьевой базе.

Видео: Геотермальная энергия

Процесс теплоснабжения

Температура воды 50 -60 градусов, является оптимальной для отопления и горячего снабжения жилого массива. Нужда в отопительных системах зависит от географического расположения и климатических условий. А в потребностях ГВС люди нуждаются постоянно. Для этого процесса сооружаются ГТС (геотермальные тепловые станции).


Если для классического производства тепловой энергии используется котельная, потребляющая твёрдое или газовое топливо, то при данном производстве используется гейзерный источник. Технический процесс очень простой, те же коммуникации, тепловые трассы и оборудование. Достаточно пробурить скважину, очистить её от газов, далее насосами направить в котельную, где будет поддерживаться температурный график, а после она попадёт в теплотрассу.


Главное отличие в том, что нет необходимости использовать топливный котлоагрегат. Это существенно снижает себестоимость тепловой энергии. Зимой абоненты получают тепло и горячее водоснабжение, а летом только ГВС.

Производство электроэнергии

Горячие источники, гейзеры служат основным компонентами в производстве электричества. Для этого применяется несколько схем, сооружаются специальные электростанции. Устройство ГТС:

  • Бак ГВС
  • Насос
  • Газоотделитель
  • Паросепаратор
  • Генерирующая турбина
  • Конденсатор
  • Повысительный насос
  • Бак – охладитель



Как видим основным элементом схемы, является паровой преобразователь. Это позволяет получать очищенный пар, так как в нем содержатся кислоты, разрушающие оборудование турбин. Существует возможность применение смешанной схемы в технологическом цикле, то есть вода и пар участвуют в процессе. Жидкость проходит всю стадию очистки от газов, так же как и пар.

Схема с бинарным источником

Рабочим компонентом является жидкость с низкой температурой кипения. Термальная вода также участвует в производстве электроэнергии и служит второстепенным сырьем.


С её помощью образуется пар низкокипящего источника. ГТС с таким циклом работы могут быть полностью автоматизированы и не требовать наличия обслуживающего персонала. Более мощные станции используют двухконтурную схему. Такой вид электростанций позволяет выходить на мощность 10 МВт. Двухконтурная структура:

  • Паровой генератор
  • Турбина
  • Конденсатор
  • Эжектор
  • Питательный насос
  • Экономайзер
  • Испаритель

Практическое применение

Огромные запасы источников во много раз превосходят ежегодное потребление энергии. Но лишь малая доля используется человечеством. Строительство станций датировано 1916 годом. В Италии была создана первая ГеоТЭС мощностью 7,5 МВт. Отрасль активно развивается в таких странах как: США, Исландия, Япония, Филиппины, Италия.

Ведутся активные изучение потенциальных мест и более удобные методы добывания. Из года в год растёт производственная мощность. Если брать в расчёт экономический показатель, то себестоимость такой отрасли равна угольным ТЭС. Исландия практически полностью покрывает коммунально-жилой фонд ГТ-источником. 80 % домов для отопления используют горячую воду из скважин. Эксперты из США утверждают, что при должном развитии ГеоТЭС могут произвести в 30 раз больше ежегодного потребления. Если говорить о потенциале, то 39 стран мира смогут полностью себя обеспечить электроэнергией, если на 100 процентов используют недра земли.

Находится на глубине 4 км:




Япония расположена в уникальной географической местности, связанной с движением магмы. Постоянно происходят землетрясения и извержения вулканов. Обладая такими природными процессами, правительство внедряет различные разработки. Создано 21 объект с общей производительностью 540 Мвт. Проводятся эксперименты по извлечению тепла из вулканов.

Плюсы и минусы ГЭ

Как говорилось ранее, ГЭ используется в различных сферах. Существуют определенные достоинства и недостатки. Поговорим о достоинствах:

  • Бесконечность ресурсов
  • Независимость от погоды, климата и времени
  • Многогранность применения
  • Экологически безопасна
  • Низкая себестоимость
  • Обеспечивает энергонезависимость государству
  • Компактность оборудования станций

Первый фактор самый основной, побуждает изучать такую отрасль, поскольку альтернатива нефти достаточно актуальна. Отрицательные изменения на нефтяном рынке усугубляют глобальный экономический кризис. При работе установок не загрязняется внешняя среда, в отличие от других. Да и сам по себе цикл не требует зависимости от ресурсов и его транспортировки к ГТС. Комплекс сам себя обеспечивает и не зависит от других. Это огромный плюс для стран с низким уровнем полезных ископаемых. Безусловно, бывают негативные моменты, ознакомимся с ними:

  • Дороговизна разработок и строительство станций
  • Химический состав требует утилизации. Её нужно сливать обратно в недра или океан
  • Выбросы сероводорода

Выбросы вредных газов очень незначительны и не сопоставимы с другими производствами. Оборудование позволяет эффективно удалять его. Отходы сбрасываются в землю, где оборудованы колодцы специальными цементными каркасами. Такая методика позволяет исключить возможность загрязнения грунтовых вод. Дорогие разработки имеют тенденцию к уменьшению, так как прогрессирует их усовершенствование. Все недостатки тщательно изучаются, ведется работа по их устранению.

Дальнейший потенциал

Наработанный базис знаний и практики становится фундаментом для будущих достижений. Пока рано говорить о полном замещении традиционных запасов, поскольку не до конца изучены термальные зоны и методы добычи энергоресурсов. Для более быстрого развития требуется больше внимания, финансовых инвестиций.


Пока общество знакомится с возможностями, медленно двигается вперед. По экспертным оценкам лишь 1 % мировой электроэнергии добывается данным фондом. Возможно, будут разработаны комплексные программы развития отрасли на глобальном уровне, проработаны механизмы и средства достижения целей. Энергия недр способна решить экологическую проблему, ведь с каждым годом вредных выбросов в атмосферу становится больше, загрязняются океаны, оказывается тоньше озоновый слой. Для быстрого и динамичного развития отрасли нужно убрать основные препятствия, тогда она во многих странах станет стратегическим плацдармом, способным диктовать условия на рынке и поднимет уровень конкурентоспособности.

Издавна Земля является источником энергоресурсов, но, признавая этот факт, надо признать и то, что невозобновляемые источники энергии не бесконечны. Ради обогрева жилья люди уже отказались от дров и больше не сжигают леса, почти исключили добычу каменного угля, признавая, что это наносит экологический вред среде обитания. Но добыча нефти и газа идёт полным ходом. Между тем у нашей планеты в запасе есть и возобновляемый источник энергии - сила её геотермальных вод.

Тепло из самых глубин планеты

Использовать тепло Земли - очень заманчивая идея и непростая, но в целом решаемая, задача. Особенно актуально это для регионов, где геотермальные источники выходят на поверхность или, хотя бы находятся в зоне досягаемости, как с инженерной, так и экономической точек зрения. Вот только местоположение подобных источников, как правило, соседствует с тектоническими разломами планеты и находится в крайне сейсмо неустойчивых регионах.


Перегретый пар и/или вода, способный вращать турбины, с тем, чтобы выработать электроэнергию, - это «побочный продукт» деятельности вулканов и гейзеров. В то же время на планете множество людей живут в опасном соседстве с подобными грозными силами природы. А потому использование этих сил на благо людей, в основном, вопрос времени: с развитием технологии этот вид энергии станет доступнее, возрастёт и мощность геотермальных станций.

Геотермальные электростанции: преимущества и недостатки

Существует несколько принципиальных схем строительства таких электростанций и, обычно, выбор зависит от конкретного источника тепла: где-то достаточно пробурить скважину и можно начинать её эксплуатацию, а где-то предварительно необходимо очистить поступающий энергоноситель от твёрдых частиц и вредных газов.

Но, каков бы ни был принцип работы такой станции, у неё имеется ряд преимуществ перед ТЭС и даже перед тепловой АЭС.

Вот недостаток у геотермальной станции всего один: в конечном счёте он сводятся её местоположению. Учитывая, что сейсмическая активность не поддаётся прогнозам, районы тектонических разломов крайне неблагоприятное место для строительства и последующей эксплуатации энергоустановок.

Зато преимущества многочисленны и неоспоримы:

  • безопасность для окружающей среды, в том числе отсутствие возникновения парниковых газов;
  • компактность размеров станции;
  • основные расходы заканчиваются с завершением строительства, расходы же на эксплуатацию - минимальны;
  • за счёт природного теплоносителя (практически неисчерпаемый ресурс!) себестоимость электрической энергии снижается почти до нуля.

Подробнее об экологии

С развитием общества, вырастает и его экологическая сознательность, проблемы разумного природопользования выходят на первый план. Ведущие экономические державы, в том числе и Россия, подписывают протоколы об ограничении выбросов в атмосферу, стремясь сократить вред от парникового эффекта и предотвратить глобальное потепление. ТЭС, использующие для выработки электроэнергии в качестве топлива газ, продукты нефтепереработки и, особенно, каменный уголь оказывают существенное влияние на рост загрязнённости атмосферы.

С тем, что имеется экологический недостаток ТЭС, ничего поделать нельзя. Можно попытаться сократить выбросы за счёт более полного сжигания топлива, за счёт применения передовых фильтрующих систем, но от «родового» недостатка тепловой энергетики не уйти.

Поэтому основной вопрос, который встаёт в связи с использованием термальной энергией, какие экологические преимущества имеет геотермальная электростанция? Используя воду и пар, нагретые самой природой, такие электростанции не производят выбросов. Минимизирует вред, наносимый окружающей среде и небольшие габариты подобных станций. Так что, преимущества геотермальных электростанций перед ТЭС не подлежат сомнению.

Геотермальные электростанции (ГеоЭС) - разновидность альтернативной энергетики. ГеоЭС получают электрическую энергию за счёт геотермальных источников недр Земли - гейзеров, открытых и подземных горячих источников воды или метана, теплых сухих пород, магмы. Поскольку геологическая активность происходит на планете регулярно, геотермальные источники можно условно считать неисчерпаемыми (возобновляемыми). По подсчётам ученых тепловая энергия Земли составляет 42 триллиона Ватт, 2% из которых (840 миллиардов) содержится в земной коре и доступна для добычи, однако и этой цифры достаточно, чтобы обеспечить население Земли неиссякаемой энергией на долгие годы.

Регионы с геотермальной активностью имеются во многих частях планеты, и идеальными для построения станций считаются районы с высокой геологической активностью (вулканической, сейсмической). Наиболее активное развитие отрасли происходит в местах скопления горячих гейзеров, а также в областях вокруг краёв литосферных плит в силу наименьшей толщины земной коры.

Для получения тепла из закрытых подземных источников используется бурение скважин. При углублении скважины температура повышается примерно на 1 градус каждые 36 метров, но есть и более высокие показатели. Полученное тепло доставляется на поверхность станции в виде горячей воды или пара, они могут применяться как для прямой подачи на отопительные системы домов и помещений, так и для последующего преобразования в электроэнергию на станции.

В зависимости от состояния среды (вода, пар) используется три способа получения электроэнергии - прямой, непрямой и смешанный. При прямом используется сухой пар, воздействующий на турбину генератора напрямую. При непрямом используется (наиболее популярен в настоящее время) очищенный и нагретый водяной пар, получаемый испарением воды, закачиваемой из подземных источников температурой до 190 градусов. Как видно из представленного рисунка - перегретый пар по добывающим скважинам поднимается к теплообменнику. В нем происходит передача тепловой энергии в закрытый контур паровой турбины. Полученный от закипания жидкости пар вращает турбину, после чего снова конденсируется в теплообменнике, что образует замкнутую и практически безвредную для атмосферы систему. Паровая турбина соединена с электрогенератором, с которого и получают электроэнергию. При смешанном способе применяют промежуточные легко-вскипаемые жидкости (фреон и др.), на которые воздействуют кипящей водой из источников.

Преимущества геотермальных электростанций:

1) Станции не требуют внешнего топлива для работы;

2) Практически неисчерпаемые запасы энергии (если соблюдать необходимые условия);

3) Возможность автоматизированной и автономной работы за счёт использования собственно-выработанного электричества;

4) Относительная дешевизна обслуживания станций;

5) Станции можно использовать для опреснения воды при расположении их на побережье океана или моря.

Геотермальные электростанции - недостатки:

1) Выбор места установки станции зачастую затруднён политическими и социальными аспектами;

2) Проектирование и строительство ГеоЭС может потребовать очень больших вложений;

3) Загрязнение атмосферы периодическими выбросами через скважину вредных веществ, содержащихся в коре (современные технологии позволяют частично преобразовывать эти выбросы в топливо), однако оно значительно ниже, чем при производстве электроэнергии из ископаемых источников;

4) Нестабильность естественных геологических процессов и, как следствие, периодическая остановка работы станций.

Первая геотермальная электростанция

Первые эксперименты с добычей энергии из геотермальных источников относятся к началу 20 века (1904 год, Италия, где спустя небольшое время была также построена первая полноценная геотермальная электростанция). В настоящее время, с учётом быстрого роста потребления электричества и быстрого иссякания запасов традиционного энергетического сырья, это одна из наиболее перспективных отраслей энергетики.

Крупнейшие геотермальные электростанции

Лидерами получения геотермальной энергии сейчас являются США и Филиппины, где построены самые крупные ГеоЭС, производящие более 300 МВт энергии каждая, что достаточно для энергоснабжения крупных городов.

Геотермальные электростанции в России

В России отрасль развита меньше, но и здесь идёт активное развитие. Самыми перспективными регионами страны являются Курильские острова и Камчатка. Крупнейшая геотермальная электростанция страны - Мутновская ГеоЭС на юго-востоке Камчатки, производящая до 50 МВт энергии (в перспективе - до 80 МВт). Также следует отметить Паужетскую (первая, построенная в России), Океанскую и Менделеевскую ГеоЭС.

Современная востребованность геотермальной энергии как одного из видов возобновляемой энергии обусловлена: истощением запасов органического топлива и зависимостью большинства развитых стран от его импорта (в основном импорта нефти и газа), а также с существенным отрицательным влиянием топливной и ядерной энергетики на среду обитания человека и на дикую природу. Все же, применяя геотермальную энергию, следует в полной мере учитывать ее достоинства и недостатки.

Главным достоинством геотермальной энергии является возможность ее использования в виде геотермальной воды или смеси воды и пара (в зависимости от их температуры) для нужд горячего водо- и теплоснабжения, для выработки электроэнергии либо одновременно для всех трех целей, ее практическая неиссякаемость, полная независимость от условий окружающей среды, времени суток и года. Тем самым использование геотермальной энергии (наряду с использованием других экологически чистых возобновляемых источников энергии) может внести существенный вклад в решение следующих неотложных проблем:

· Обеспечение устойчивого тепло- и электроснабжения населения в тех зонах нашей планеты, где централизованное энергоснабжение отсутствует или обходится слишком дорого (например, в России на Камчатке, в районах Крайнего Севера и т.п.).

· Обеспечение гарантированного минимума энергоснабжения населения в зонах неустойчивого централизованного энергоснабжения из-за дефицита электроэнергии в энергосистемах, предотвращение ущерба от аварийных и ограничительных отключений и т.п.

· Снижение вредных выбросов от энергоустановок в отдельных регионах со сложной экологической обстановкой.

При этом в вулканических регионах планеты высокотемпературное тепло, нагревающее геотермальную воду до значений температур, превышающих 140-150°С, экономически наиболее выгодно использовать для выработки электроэнергии. Подземные геотермальные воды со значениями температур, не превышающими 100°С, как правило, экономически выгодно использовать для нужд теплоснабжения, горячего водоснабжения и для других целей в соответствии с рекомендациями, приведенными в табл.1 .

Таблица 1

Обратим внимание на то, что эти рекомендации по мере развития и совершенствования геотермальных технологий пересматриваются в сторону использования для производства электроэнергии геотермальных вод с все более низкими температурами. Так, разработанные в настоящее время комбинированные схемы использования геотермальных источников позволяют использовать для производства электроэнергии теплоносители с начальными температурами 70-80°С, что значительно ниже рекомендуемых в табл.1 температур (150°С и выше). В частности, в Санкт-Петербургском политехническом институте созданы гидропаровые турбины, использование которых на ГеоТЭС позволяет увеличивать полезную мощность двухконтурных систем (второй контур - водный пар) в диапазоне температур 20-200°С в среднем на 22 %.

Значительно повышается эффективность применения термальных вод при их комплексном использовании. При этом в разных технологических процессах можно достичь наиболее полной реализации теплового потенциала воды, в том числе и остаточного, а также получить содержащиеся в термальной воде ценные компоненты (йод, бром, литий, цезий, кухонная соль, глауберова соль, борная кислота и многие другие) для их промышленного использования.

Основной недостаток геотермальной энергии - необходимость обратной закачки отработанной воды в подземный водоносный горизонт. Другой недостаток этой энергии заключается в высокой минерализации термальных вод большинства месторождений и наличии в воде токсичных соединений и металлов, что в большинстве случаев исключает возможность сброса этих вод в расположенные на поверхности природные водные системы. Отмеченные выше недостатки геотермальной энергии приводят к тому, что для практического использования теплоты геотермальных вод необходимы значительные капитальные затраты на бурение скважин, обратную закачку отработанной геотермальной воды, а также на создание коррозийно-стойкого теплотехнического оборудования.

Однако в связи с внедрением новых, менее затратных, технологий бурения скважин, применением эффективных способов очистки воды от токсичных соединений и металлов капитальные затраты на отбор тепла от геотермальных вод непрерывно снижаются. К тому же следует иметь ввиду, что геотермальная энергетика в последнее время существенно продвинулась в своем развитии. Так, последние разработки показали возможность выработки электроэнергии при температуре пароводяной смеси ниже 80єС, что позволяет гораздо шире применять ГеоТЭС для выработки электроэнергии. В связи с эти ожидается, что в странах со значительным геотермальным потенциалом и первую очередь в США мощность ГеоТЭС в самое ближайшее время удвоится. .

геотермальный источник энергия потенциал

Геотермальные электростанции в России являются перспективным возобнобляемым источником. Россия имеет богатые геотермальные ресурсы с высокой и низкой температурами и делает хорошие шаги в этом направлении. Концепция экологической защиты может помочь продемонстрировать преимущества возобновляемых альтернативных источников использования энергии.

В России геотермальные исследования проведены в 53 научных центрах и высших учебных заведениях расположенных в разных городах и в разных ведомствах: Академии наук, Министерствах образования, природных ресурсов, топлива и энергетики. Такие работы проводятся в некоторых региональных научных центрах, как Москва, Санкт-Петербург, Архангельск, Махачкала, Геленджик, Приволжье (Ярославль, Казань, Самара), Урал (Уфа, Екатеринбург, Пермь, Оренбург), Сибирь (Новосибирск, Тюмень, Томск, Иркутск, Якутск), Дальний Восток (Хабаровск, Владивосток, Южно-Сахалинск, Петропавловск-на-Камчатке).

В этих центрах, проводятся: теоретические, прикладные, региональные изыскания, а также создается специальный инструментарий.

Использование геотермальной энергии

Геотермальные электростанции в России используются в основном для теплоснабжения и обогрева нескольких городов и населенных пунктов на Северном Кавказе и Камчатке с общей численностью населения 500 тыс.чел. Кроме того, в некоторых регионах страны глубокое тепло используется для теплиц общей площадью 465 тыс. м 2 . Самые активные гидротермальные ресурсы используются в Краснодарском крае, Дагестане и на Камчатке. Примерно половину добытых ресурсов применяется для теплоснабжения жилья и промышленных помещений, третья часть – на отопление теплиц, а только около 13 % – для промышленных процессов.

Помимо этого термальные воды используются примерно в 150 санаториях и 40 заводах по розливу минеральной воды. Количество электрической энергии, разработанной геотермальными электростанциями в России увеличивается по сравнению с мировым,но остается крайне незначительным.

Доля составляет всего 0,01 процента от общей выработки электроэнергии в стране.

Наиболее перспективным направлением использования низкотемпературных геотермальных ресурсов является применение тепловых насосов. Этот способ является оптимальным для многих регионов России – в Европейской части России и на Урале. Пока делаются первые шаги в этом направлении.

Электричество вырабатывается на некоторых электростанциях (ГеоЭС) только на Камчатке и Курильских островах. В настоящее время три станции работают на Камчатке:

Паужетская ГеоЭС (12 МВт), Верхне-Мутновская (12 МВт) и Мутновская ГеоЭС (50 МВт).

Паужетская ГеоЭС внутри

Две небольших ГеоЭС находятся в эксплуатации на островах Кунашир – Менделеевская ГеоТЭС, Итуруп – «Океанская» с установленной мощностью 7,4 МВт и 2,6 МВт соответственно.

Геотермальные электростанции в России по своему объему стоят на последних местах в мире. В Исландии приходится более 25% добываемой электроэнергии этим способом.

Менделеевская ГеоТЭС на Кунашире

Итуруп – «Океанская»

Россия имеет значительные геотермальные ресурсы и имеющийся потенциал гораздо больше, чем текущее положение.

Этот ресурс далеко не адекватно развит в стране. В бывшем Советском Союзе, геолого-разведочные работы полезных ископаемых, нефти и газа хорошо поддерживался. Однако такая обширная деятельность не направлена для изучения геотермальных резервуаров даже в следствие подхода: геотермальные воды не считались энергетическими ресурсами. Но все-таки результаты бурения тысяч “сухих скважин” (просторечие в нефтяной отрасли), приносят вторичную выгоду для геотермальных исследований. Эти заброшенные колодцы которые были во время исследований нефтяной отрасли дешевле отдать для новых целей.

Преимущества и проблемы использования геотермальных ресурсов

Экологические преимущества использования возобновляемых источников энергии, таких как геотермальная признано. Однако есть серьезные препятствия на пути развития возобновляемых ресурсов, которые препятствуют развитию. Подробные геологические исследования и дорогостоящее бурение геотермальных скважин представляет собой крупные финансовые затраты, связанные со значительными геологическими и техническими рисками.

Использование возобновляемых источников энергии, включая геотермальные ресурсы, имеют также преимущества.

  • Во-первых, использование местных энергетических ресурсов может снизить зависимость от импорта или необходимости строительства новых генерирующих мощностей для теплоснабжения в промышленных или жилых районах горячего водоснабжения.
  • Во-вторых, замена традиционных видов топлива чистой энергией вызывает значительные улучшения состоянии окружающей среды и общественного здравоохранения и имеет соответствующую экономию.
  • В-третьих, мера экономии энергии связан с КПД. Системы централизованного теплоснабжения являются общими в городских центрах России и нуждаются в модернизации и перехода на возобновляемые источники энергии со своими преимуществами. Это особенно важно с экономической точки зрения, устаревшие системы централизованного теплоснабжения не экономичны и инженерное время жизни уже истекло.

Геотермальные электростанции в России “чище” по сравнению с используемые ископаемое топливо. Международная конвенция по изменению климата и программы Европейского сообщества предусматривают продвижение возобновляемых источников энергии. Однако специфические юридические предписания относительно разведочных работ и добычи геотермальных вод отсутствует во всех странах. Отчасти это объясняется тем, что воды регулируются в соответствии с законами водных ресурсов, полезные ископаемые в соответствии с энергетическими законами.

Геотермальная энергия не относится к определенным равзделам законодательства и затрудняется решение различных методов эксплуатации и использования геотермальной мощности.

Геотермальная энергетика и устойчивое развитие

Промышленное развитие за последние два столетия принесло множество инноваций для человеческой цивилизации и принесли эксплуатацию природных ресурсов с угрожающей быстротой. Начиная с семидесятых годов 20-го века серьезные предупреждения о “пределах роста” пошли по миру с большим эффектом: ресурс эксплуатации, гонка вооружений, расточительное потребление разбазарили эти ресурсы в ускоренном темпе, наряду с экспоненциальным ростом численности населения планеты. На все это безумие необходимо большее количество энергии.

Самые расточительное и безперспективное – безответственность человека по привычке израсходования конечных и быстро истощающихся энергетических ресурсов угля, нефти и газа. Этой безответственной деятельностью занимается химическая промышленность для производства пластмасс, синтетических волокон, строительных материалов, красок, лаков, фармацевтических и косметических продуктов, пестицидов и многих других продуктов органической химии.

Но самый катастрофический эффект от использования ископаемого топлива -это равновесие биосферы и климата до такой степени, что необратимо будет влиять на наш жизненный выбор: рост пустынь, кислотные дожди портящие плодородные земли, отравление рек, озер и грунтовых вод, порча питьевой воды для растущего населения планеты, – и худшее из всех – более частые погодные катаклизмы, втягивающие ледники, разрушиающие горнолыжные курорты, тающие ледники, оползни, более сильные штормы, затопление густонаселенных прибрежных районов и островов, тем самым подвергая опасности людей и редкие виды флоры и фауны в результате миграций.

Потеря плодородных земель и культурное наследие происходит за счет добычи неумолимо растущего ископаемого топлива, выбросов в атмосферу, вызывающих глобальное потепление.

Путь к чистой, устойчивой энергетике сохраняющей ресурсы и привлечение биосферы и климата в естественный баланс связан с использованием в виде геотермальных электростанций в России.

Ученые понимают необходимость сокращения сжигания ископаемого топлива выходящего за пределы целевых показателей Киотского протокола для того, чтобы замедлить глобальное потепление атмосферы Земли.