Определение жизни. Уровни организации жизни Определение молекулярный уровень

Различают такие уровни организации живой материи - уровни биологической организации: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой и экосистемный.

Молекулярный уровень организации - это уровень функционирования биологических макромолекул - биополимеров: нуклеиновых кислот, белков, полисахаридов, липидов, стероидов. С этого уровня начинаются важнейшие процессы жизнедеятельности: обмен веществ, превращение энергии, передача наследственной информации . Этот уровень изучают: биохимия, молекулярная генетика, молекулярная биология, генетика, биофизика.

Клеточный уровень - это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов). Клетка - это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология.

Тканевый уровень организации - это уровень, на котором изучается строение и функционирование тканей. Исследуется этот уровень гистологией и гистохимией.

Органный уровень организации - это уровень органов многоклеточных организмов. Изучают этот уровень анатомия, физиология, эмбриология.

Организменный уровень организации - это уровень одноклеточных, колониальных и многоклеточных организмов. Специфика организменного уровня в том, что на этом уровне происходит декодирование и реализация генетической информации, формирование признаков, присущих особям данного вида. Этот уровень изучается морфологией (анатомией и эмбриологией), физиологией, генетикой, палеонтологией.

Популяционно-видовой уровень - это уровень совокупностей особей - популяций и видов . Этот уровень изучается систематикой, таксономией, экологией, биогеографией, генетикой популяций . На этом уровне изучаются генетические и экологические особенности популяций , элементарные эволюционные факторы и их влияние на генофонд (микроэволюция), проблема сохранения видов.

Экосистемный уровень организации - это уровень микроэкосистем, мезоэкосистем, макроэкосистем. На этом уровне изучаются типы питания, типы взаимоотношений организмов и популяций в экосистеме, численность популяций , динамика численности популяций, плотность популяций, продуктивность экосистем, сукцессии. Этот уровень изучает экология.

Выделяют также биосферный уровень организации живой материи. Биосфера - это гигантская экосистема, занимающая часть географической оболочки Земли. Это мега-экосистема. В биосфере происходит круговорот веществ и химических элементов, а также превращение солнечной энергии.

2. Фундаментальные свойства живой материи

Обмен веществ (метаболизм)

Обмен веществ (метаболизм) - совокупность протекающих в живых системах химических превращений, обеспечивающих их жизнедеятельность, рост, воспроизведение, развитие, самосохранение, постоянный контакт с окружающей средой, способность адаптироваться к ней и ее изменениям. В процессе обмена веществ происходит расщепление и синтез молекул, входящих в состав клеток; образование, разрушение и обновление клеточных структур и межклеточного вещества. В основе метаболизма лежат взаимосвязанные процессы ассимиляции (анаболизм) и диссимиляции (катаболизм). Ассимиляция - процессы синтеза сложных молекул из простых с расходованием энергии, запасенной в ходе диссимиляции (а также накопление энергии при отложении в запас синтезированных веществ). Диссимиляция - процессы расщепления (анаэробного или аэробного) сложных органических соединений, идущее с высвобождением энергии, необходимой для осуществления жизнедеятельности организма. В отличие от тел неживой природы обмен с окружающей средой для живых организмов является условием их существования. При этом происходит самообновление. Процессы обмена веществ, протекающие внутри организма, объединены в метаболические каскады и циклы химическими реакциями, которые строго упорядочены во времени и пространстве. Согласованное протекание большого количества реакций в малом объеме достигается путем упорядоченного распределения отдельных звеньев обмена веществ в клетке (принцип компартментализации). Процессы обмена веществ регулируются с помощью биокатализаторов - особых белков-ферментов. Каждый фермент обладает субстратной специфичностью катализировать превращение лишь одного субстрата. В основе этой специфичности лежит своеобразное "узнавание" субстрата ферментом. Ферментативный катализ отличается от небиологического чрезвычайно высокой эффективностью, в результате чего скорость соответствующей реакции повышается в 1010 - 1013 раз. Каждая молекула фермента способна осуществлять от нескольких тысяч до нескольких миллионов операций в минуту, не разрушаясь в процессе участия в реакциях. Еще одно характерное отличие ферментов от небиологических катализаторов состоит в том, что ферменты способны ускорять реакции при обычных условиях (атмосферном давлении, температуре тела организма и т.п.). Все живые организмы могут быть разделены на две группы - автотрофы и гетеротрофы, отличающиеся источниками энергии и необходимых веществ для своей жизнедеятельности. Автотрофы - организмы, синтезирующие из неорганических веществ органические соединения с использованием энергии солнечного света (фотосинтетики - зеленые растения, водоросли, некоторые бактерии) или энергии, получаемой при окислении неорганического субстрата (хемосинтетики - серо-, железобактерии и некоторые другие), Автотрофные организмы способны синтезировать все компоненты клетки. Роль фотосинтезирующих автотрофов в природы является определяющей - являясь первичным продуцентом органического вещества в биосфере, они обеспечивают существование всех других организмов и ход биогеохимических циклов в круговороте веществ на Земле. Гетеротрофы (все животные, грибы, большинство бактерий, некоторые бесхлорофилльные растения) - организмы, нуждающиеся для своего существования в готовых органических веществах, которые, поступая в качестве пищи, служат как источником энергии, так и необходимым "строительным материалом". Характерной чертой гетеротрофов является наличие у них амфиболизма, т.е. процесса образования мелких органических молекул (мономеров), образующихся при переваривании пищи (процесс деградации сложных субстратов). Такие молекулы - мономеры используются для сборки собственных сложных органических соединений.

Самовоспроизведение (репродукция)

Способность к размножению (воспроизведению себе подобных, самовоспроизведению) относится к одному из фундаментальных свойств живых организмов. Размножение необходимо для того, чтобы обеспечить непрерывность существования видов, т.к. продолжительность жизни отдельного организма ограничена. Размножение с избытком компенсирует потери, обусловленные естественным отмиранием особей, и таким образом поддерживает сохранение вида в ряду поколений особей. В процессе эволюции живых организмов происходила эволюция способов размножения. Поэтому у ныне существующих многочисленных и разнообразных видов живых организмов мы обнаруживаем разные формы размножения. Многие виды организмов сочетают несколько способов размножения. Необходимо выделить два, принципиально отличающихся типа размножения организмов - бесполое (первичный и более древний тип размножения) и половое. В процессе бесполого размножения новая особь образуется из одной или группы клеток (у многоклеточных) материнского организма. При всех формах бесполого размножения потомки обладают генотипом (совокупность генов) идентичным материнскому. Следовательно, все потомство одного материнского организма оказывается генетически однородным и дочерние особи обладают одинаковым комплексом признаков. При половом размножении новая особь развивается из зиготы, образующейся путем слияния двух специализированных половых клеток (процесс оплодотворения), продуцируемых двумя родительскими организмами. Ядро в зиготе содержит гибридный набор хромосом, образующийся в результате объединения наборов хромосом слившихся ядер гамет. В ядре зиготы, таким образом, создается новая комбинация наследственных задатков (генов), привнесенных в равной мере обоими родителями. А развивающийся из зиготы дочерний организм будет обладать новым сочетанием признаков. Иными словами, при половом размножении происходит осуществление комбинативной формы наследственной изменчивости организмов, обеспечивающий приспособление видов к меняющимся условиям среды и представляющей собой существенный фактор эволюции. В этом заключается значительное преимущество полового размножения по сравнению с бесполым. Способность живых организмов к самовоспроизведению базируется на уникальном свойстве нуклеиновых кислот к репродукции и феномене матричного синтеза, лежащего в основе образования молекул нуклеиновых кислот и белков. Самовоспроизведение на молекулярном уровне обусловливает как осуществление обмена веществ в клетках, так и самовоспроизведение самих клеток. Клеточное деление (самовоспроизведение клеток) лежит в основе индивидуального развития многоклеточных организмов и воспроизведения всех организмов. Размножение организмов обеспечивает самовоспроизведение всех видов, населяющих Землю, что в свою очередь обусловливает существование биогеоценозов и биосферы.

Наследственность и изменчивость

Наследственность обеспечивает материальную преемственность (поток генетической информации) между поколениями организмов. Она тесно связана с репродукцией на молекулярном, субклеточном и клеточном уровнях. Генетическая информация, определяющая разнообразие наследственных признаков, зашифрована в молекулярной структуре ДНК (у некоторых вирусов - в РНК). В генах закодирована информация о структуре синтезируемых белков, ферментных и структурных. Генетический код - это система "записи" информации о последовательности расположения аминокислот в синтезируемых белках с помощью последовательности нуклеотидов в молекуле ДНК. Совокупность всех генов организма называется генотипом, а совокупность признаков - фенотипом. Фенотип зависит как от генотипа, так и факторов внутренней и внешней среды, которые влияют на активность генов и обусловливают регулярные процессы. Хранение и передача наследственной информации осуществляется у всех организмов с помощью нуклеиновых кислот, генетический код един для всех живых существ на Земле, т.е. он универсален. Благодаря наследственности из поколения в поколение передаются признаки, обеспечивающие приспособленность организмов к среде их обитания. Если бы при размножении организмов проявлялась только преемственность существующих признаков и свойств, то на фоне меняющихся условий внешней среды существование организмов было бы невозможно, так как необходимым условием жизни организмов является их приспособленность к условиям среды обитания. Проявляется изменчивость в разнообразии организмов, принадлежащих к одному и тому же виду. Изменчивость может реализовываться у отдельных организмов в ходе их индивидуального развития или в пределах группы организмов в ряду поколений при размножении. Выделяют две основные формы изменчивости, различающиеся по механизмам возникновения, характеру изменения признаков и, наконец, их значимости для существования живых организмов - генотипическую (наследственную) и модификационную (ненаследственную). Генотипическая изменчивость связана с изменением генотипа и приводит к изменению фенотипа. В основе генотипической изменчивости могут лежать мутации (мутационная изменчивость) или новые комбинации генов, возникающие в процессе оплодотворения при половом размножении. При мутационной форме изменения связаны, в первую очередь, с ошибками при репликации нуклеиновых кислот. Таким образом происходит возникновение новых генов, несущих новую генетическую информацию; происходит появление новых признаков. И если вновь возникающие признаки полезны организму в конкретных условиях, то они "подхватываются" и "закрепляются" естественным отбором. Таким образом, на наследственной (генотипической) изменчивости базируется приспособляемость организмов к условиям внешней среды, разнообразие организмов, создаются предпосылки для позитивной эволюции. При ненаследственной (модификационной) изменчивости происходят изменения фенотипа под действием факторов внешней среды и не связанные с изменением генотипа. Модификации (изменения признаков при модификационной изменчивости) происходят в пределах нормы реакции, находящейся под контролем генотипа. Модификации не передаются следующим поколениям. Значение модификационной изменчивости заключается в том, что она обеспечивает приспособляемость организма к факторам внешней среды в течение его жизни.

Индивидуальное развитие организмов

Всем живым организмам свойственен процесс индивидуального развития - онтогенез. Традиционно, под онтогенезом понимают процесс индивидуального развития многоклеточного организма (образующегося в результате полового размножения) от момента формирования зиготы до естественной смерти особи. За счет деления зиготы и последующих поколений клеток формируется многоклеточный организм, состоящий из огромного числа разных типов клеток, различных тканей и органов. Развитие организма базируется на "генетической программе" (заложенной в генах хромосом зиготы) и осуществляется в конкретных условиях среды, существенно влияющей на процесс реализации генетической информации в ходе индивидуального существования особи. На ранних этапах индивидуального развития происходит интенсивный рост (увеличение массы и размеров), обусловленный репродукцией молекул, клеток и других структур, и дифференцировка, т.е. появление различий в структуре и усложнение функций. На всех этапах онтогенеза существенное регулирующее влияние оказывают на развитие организма различные факторы внешней среды (температура, гравитация, давление, состав пищи по содержанию химических элементов и витаминов, разнообразные физические и химические агенты). Изучение роли этих факторов в процессе индивидуального развития животных и человека имеет огромное практическое значение, возрастающее по мере усиления антропогенного воздействия на природу. В различных областях биологии, медицины, ветеринарии и других наук широко проводятся исследования по изучению процессов нормального и патологического развития организмов, выяснению закономерностей онтогенеза.

Раздражимость

Неотъемлемым свойством организмов и всех живых систем является раздражимость - способность воспринимать внешние или внутренние раздражители (воздействия) и адекватно на них реагировать. У организмов раздражимость сопровождается комплексом изменений, выражающихся в сдвигах обмена веществ, электрического потенциала на мембранах клеток, физико-химических параметров в цитоплазме клеток, в двигательных реакциях, а высокоорганизованным животным присущи изменения в их поведении.

4. Центральная догма молекулярной биологии - обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку , но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году и приведено в соответствие с накопившимися к тому времени данными в 1970 году. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК → ДНК. В природе встречаются также переходы РНК → РНК и РНК → ДНК (например у некоторых вирусов), а также изменение конформации белков, передаваемое от молекулы к молекуле.

Универсальные способы передачи биологической информации

В живых организмах встречаются три вида гетерогенных, то есть состоящих из разных мономеров полимера - ДНК, РНК и белок. Передача информации между ними может осуществляться 3 х 3 = 9 способами. Центральная догма разделяет эти 9 типов передачи информации на три группы:

Общий - встречающиеся у большинства живых организмов;

Специальный - встречающиеся в виде исключения, у вирусов и у мобильных элементов генома или в условиях биологического эксперимента ;

Неизвестные - не обнаружены.

Репликация ДНК (ДНК → ДНК)

ДНК - основной способ передачи информации между поколениями живых организмов, поэтому точное удвоение (репликация) ДНК очень важна. Репликация осуществляется комплексом белков, которые расплетают хроматин , затем двойную спираль. После этого ДНК полимераза и ассоциированные с ней белки, строят на каждой из двух цепочек идентичную копию.

Транскрипция (ДНК → РНК)

Транскрипция - биологический процесс, в результате которого информация, содержащаяся в участке ДНК, копируется на синтезируемую молекулу информационной РНК . Транскрипцию осуществляют факторы транскрипции и РНК-полимераза . В эукариотической клетке первичный транскрипт (пре-иРНК) часто редактируется. Этот процесс называется сплайсингом .

Трансляция (РНК → белок)

Зрелая иРНК считывается рибосомами в процессе трансляции. В прокариотических клетках процесс транскрипции и трансляции не разделён пространственно, и эти процессы сопряжены. В эукариотических клетках место транскрипции клеточное ядро отделено от места трансляции (цитоплазмы ) ядерной мембраной , поэтому иРНК транспортируется из ядра в цитоплазму. иРНК считывается рибосомой в виде трёхнуклеотидных «слов». Комплексы факторов инициации и факторов элонгации доставляют аминоацилированные транспортные РНК к комплексу иРНК-рибосома.

5. Обратная транскрипция - это процесс образования двуцепочечной ДНК на матрице одноцепочечной РНК . Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении.

Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии , которая предполагала, что ДНК транскрибируется в РНК и далее транслируется в белки. Встречается у ретровирусов , например, ВИЧ и в случае ретротранспозонов .

Трансдукция (от лат. transductio - перемещение) - процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом . Общая трансдукция используется в генетике бактерий для картирования генома и конструирования штаммов . К трансдукции способны как умеренные фаги, так и вирулентные, последние, однако, уничтожают популяцию бактерий, поэтому трансдукция с их помощью не имеет большого значения ни в природе, ни при проведении исследований.

Векторная молекула ДНК - это молекула ДНК, которая выступает в роли носителя. Молекулу-носитель должен отличать ряд особенностей:

Способность к автономной репликации в клетке хозяина (чаще бактериальной или дрожжевой)

Наличие селективного маркера

Наличие удобных сайтов рестрикции

В роли векторов чаще всего выступают бактериальные плазмиды.

Теория Эволюции

Методические указания к лабораторным занятиям

для студентов агрономического факультета

Миасское

Методические указания к выполнению лабораторных занятий предназначены для студентов агрономического факультета обучающихся по направлению 35.03.04 «Агрономия», 35.03.07 «Технология производства и переработки сельскохозяйственной продукции» на очной и заочной формах обучения с целью освоения дисциплины «Теория эволюции».

Составитель:

Матвеева Е. Ю. – канд. биол. наук (Институт агроэкологии – филиал ФГБОУ ВО ЮУрГАУ)

© Южно-Уральский государственный аграрный университет, 2016

© Институт агроэкологии, 2016

Структура и оценивание отчета по лабораторному занятию……………….4

Свойства и уровни организации живой материи………………….………….5

Моделирование эволюции………………………………………….…………24

Эволюционные взгляды ученых………………………………….…………..26

Эволюционные теории Ж. Б. Ламарка и Ч. Дарвина………….…………….79

Основные этапы развития органического мира……………….…………….90

Эволюция организмов как адаптациогенез…………………………………108

Генетические основы эволюции……………………………………………..118

Факторы макроэволюции……………………………………………………..128


Структура и оценивание отчета по лабораторному занятию

Отчет по лабораторному занятию используется для оценки качества освоения студентом образовательной программы по темам дисциплины. Отчет оценивается оценкой «зачтено», «не зачтено» (таблица 1).

Таблица 1 – Критерии оценивания отчета

1 Тема лабораторного занятия

2 Выполненные задания

3 Ответы на контрольные вопросы


Свойства и уровни организации живой материи

Введение

Органический мир представляет собой единое целое, т. к. составляет систему взаимосвязанных частей (в которых существование одних организмов зависит от других), и в то же время дискретен (состоит из отдельных единиц – организмов, или особей). Каждый живой организм также дискретен, так как состоит из отдельных органов, тканей, клеток, но вместе с тем каждый из органов, обладая определенной автономностью, действует как часть целого. Каждая клетка состоит из органоидов, но функционирует как единое целое. Наследственная информация осуществляется генами, но ни один из генов вне всей совокупности не определяет развитие признака и т. д.

С дискретностью жизни связаны различные уровни организации органического мира, которые можно определить как дискретные состояния биологических систем, характеризующихся свойствами соподчиненности, взаимосвязанности, специфическими закономерностями. При этом каждый новый уровень отличается особыми свойствами и закономерностями прежнего, низшего уровня, поскольку каждый организм, с одной стороны, состоит из подчиненных ему элементов, а с другой – сам является элементом, входящим в состав какой-то макробиологической системы. На всех уровнях жизни проявляются такие ее атрибуты, как дискретность и целостность, структурная организация, обмен веществом, энергией и информацией. Существование жизни на всех уровнях подготавливается и определяется структурой низшего уровня. Характер клеточного уровня организации определяется молекулярным и субклеточным уровнями, организменный – клеточным, тканевым и т. д.

Структурные уровни организации жизни чрезвычайно многообразны, но из всего их многообразия основными являются молекулярно-генетический, онтогенетический, популяционно-видовой и биосферный.

Молекулярно-генетический уровень жизни

Для нормального жизненного цикла любому организму необходим определенный набор основных химических элементов. Этот набор включает в себя три группы элементов: макроэлементы, микроэлементы и ультрамикроэлементы.

К макроэлементам, которые называют, органогенами относятся четыре элемента – углерод, кислород, азот и водород. Эти элементы составляют основную массу органического вещества клетки (95–99%).

К макроэлементам относят также калий, натрий, кальций, магний, фосфор, серу, хлор и железо, количество которых в клетке колеблется от десятых до сотых долей процента (1,9%).

Микроэлементами называют такие элементы, которые присутствуют в живых тканях в очень малых концентрациях (0,001% до 0,000001%). Эту группу составляют: марганец, железо, кобальт, медь, цинк, ванадий, бор, алюминий, кремний, молибден, йод (.01%). Входят в состав биологически активных веществ – ферментов, витаминов, гормонов.

Ультрамикроэлементы – элементы, содержание которых в клетке не превышает 0,000001%. Эту группу составляют золото, уран, радий и др.

Таким образом, для нормальной жизнедеятельности живая клетка нуждается в 24 природных химических элементах, каждый из которых имеет свое назначение, всего в клетках обнаружено 80 элементов.

Основными органическими веществами клетки являются углеводы, липиды, аминокислоты, белки, нуклеиновые кислоты.

К углеводам относят соединения углерода, которые подразделяют на три группы сахаридов. Углеводы играют важную роль в жизни организмов: они являются компонентом соединительной ткани позвоночных животных, обеспечивают свертывание крови, восстановление поврежденных тканей, образуют стенки растений, бактерий, грибов и т. д.

Липиды – разнообразные группы водоотталкивающих соединений, большая часть липидов представляет собой сложные эфиры трехатомного спирта, глицерина и жирных кислот, т. е. жиры. Жиры служат источником энергии и воды для клетки и организма в целом, кроме того они участвуют в терморегуляции организма, создавая теплоизолирующий жировой слой. Другие виды липидов выполняют защитную функцию, входя в состав наружного скелета насекомых, покрывая перья и шерсть.

Аминокислотами называют соединения, имеющие в своем составе карбоксильную группу и аминогруппу. Всего в природе встречается более 170 аминокислот. В клетках они выполняют функцию строительного материала для белков. Однако в составе белков встречаются только 20 аминокислот. Большинство аминокислот производится растениями и микроорганизмами. Однако у некоторых животных отсутствует часть ферментов, необходимых для синтеза аминокислот, поэтому они должны получать некоторые аминокислоты с пищей. Такие кислоты называются незаменимыми. Для человека восемь кислот незаменимы, а еще четыре заменимы только условно. Важнейшим свойством аминокислот является их способность вступать в реакцию полконденсации с образованием полимерных цепей – полипептидов и белков.

Белки являются главным строительным материалом для клетки. Они представляют собой сложные биополимеры, элементами которых выступают мономерные цепи, состоящие из различных сочетаний двадцати аминокислот. В живой клетке белков больше, чем других органических соединений (до 50% сухой массы).

Большинство белков выполняют функцию катализаторов (ферментов). Также белки играют роль переносчиков; например, гемоглобин переносит кислород от легких к тканям. Мышечные сокращения и внутриклеточные движения – результат взаимодействия молекул белков, функция которых заключается в координации движения. Есть белки – антитела, функцией которых является защита организма от вирусов, бактерий и т. д. Активность нервной системы зависит от белков, с помощью которых собирается и хранится информация из окружающей среды. Белки, которые называются гормонами, управляют ростом клеток и их активностью.

Довольно хорошо изучены сегодня молекулярные основы обмена веществ в клетке.

Существует три основных типа обмена веществ (метаболизма):

Катаболизм, или диссимиляция – процесс расщепления сложных органических соединений, сопровождающийся выделением химической энергии при разрыве химических связей. Эта энергия запасается в фосфатных связях АТФ (аденозинтрифосфорной кислоты).

Амфоболизм – процесс образования в ходе катаболизма мелких молекул, которые затем принимают участие в строительстве более сложных молекул.

Анаболизм, или ассимиляция – разветвленная система процессов биосинтеза сложных молекул с расходованием энергии АТФ.

Существует несколько механизмов изменчивости на молекулярном уровне. Важнейшим из них является механизм мутации генов – непосредственное преобразование самих генов, находящихся в хромосоме под воздействием внешних факторов. Факторами, вызывающими мутацию (мутагенами), являются: радиация, токсичные химические соединения, а также вирусы. При этом механизме порядок расположения генов в хромосоме не меняется.

Еще один механизм изменчивости – рекомбинация генов. Это создание новых комбинаций генов, располагающихся в конкретной хромосоме. При этом сами гены не меняются, а перемещаются с одного участка хромосомы на другой, или идет обмен генами между двумя хромосомами. Такой процесс имеет место при половом размножении у высших организмов. При этом не происходит изменения общего объема генетической информации, он остается неизменным. Этот механизм объясняет, почему дети лишь частично похожи на своих родителей – они наследуют признаки от обоих родительских организмов, которые сочетаются случайным образом.

Еще один механизм изменчивости был открыт лишь в 1950-е годы. Это – неклассическая рекомбинация генов, при которой происходит общее увеличение объема генетической информации за счет включения в геном клетки новых генетических элементов. Чаще всего эти элементы привносятся в клетку вирусами. Сегодня обнаружено несколько типов трансмиссивных генов. Среди них – плазмиды, представляющие собой двухцепочную кольцевую ДНК. Из-за них после длительного использования каких-либо лекарств наступает привыкание к этим лекарствам, и они перестают действовать. Патогенные бактерии, против которых действует наше лекарство, связываются с плазмидами, которые придают этим бактериям устойчивость к лекарству, и бактерии перестают его замечать.

Мигрирующие генетические элементы могут вызывать как структурные перестройки в хромосомах, так и мутации генов. Возможность использования таких элементов человеком привела к появлению новой науки – генной инженерии, целью которой является создание новых форм организмов с заданными свойствами. При этом конструируются новые, не существующие в природе сочетания генов с помощью генетических и биохимических методов. Для этого видоизменяется ДНК, которая кодируется для производства белка с нужными свойствами. На этом базируются все современные биотехнологии.

Онтогенетический уровень

Этот уровень возник в результате формирования живых организмов. Основной единицей жизни этого уровня выступает отдельная особь, а элементарным явлением – онтогенез. Биологическая особь может быть как одноклеточным, так и многоклеточным организмом, однако в любом случае она представляет собой целостную, самовоспроизводящуюся систему.

Онтогенез – процесс индивидуального развития организма от рождения через последовательные морфологические, физиологические и биохимические изменения до смерти, процесс реализации наследственной информации. В настоящее время не создана единая теория онтогенеза, поскольку не установлены причины и факторы, определяющие индивидуальное развитие организма.

Клеточный уровень. Сегодня наукой достоверно установлено, что наименьшей самостоятельной единицей строения, функционирования и развития живого организма является клетка, которая представляет собой элементарную биологическую систему, способную к самообновлению, самовоспроизведению и развитию, т. е. наделена всеми признаками живого организма. Клеточные структуры лежат в основе строения любого живого организма, каким бы многообразным и сложным не представлялось его строение. Наука, изучающая живую клетку, называется цитологией. Она изучает строение клеток, их функционирование как элементарных живых систем, исследует приспособление к условиям среды и др. Также цитология изучает особенности специализированных клеток, становление их особых функций и развитие специфических клеточных структур. Таким образом, современная цитология может быть названа физиологией клетки.

Открытие существования клеток и их исследования произошло в конце XVII века, когда был изобретен первый микроскоп. Впервые клетка была описана английским ученым Робертом Гуком еще в 1665 году, когда он рассматривал кусочек пробки. Поскольку его микроскоп был не очень совершенным, то, что он увидел, было на самом деле стенками отмерших клеток. Потребовалось почти двести лет, чтобы биологи поняли, что главную роль играют не стенки клетки, а ее внутреннее содержание. Среди предшественников клеточной теории также следует назвать Антонии ван Левенгука (1632–1723), доказавшего, что ткани многих растительных организмов построены из клеток.

Т. Шванном и М. Шлейденом в 1838 году была создана клеточная теория, ставшая величайшим событием в биологии XIX века. Именно эта теория дала решающие доказательства единства всей живой природы, послужила фундаментом для развития эмбриологии, гистологии, физиологии, теории эволюции, а также понимания индивидуального развития организмов. Мощный толчок цитология получила с момента создания генетики и молекулярной биологии. После этого были открыты новые компоненты клетки – мембрана, рибосомы, лизосомы и др.

По современным представлениям клетки могут существовать как самостоятельные организмы (например, простейшие), так и в составе многоклеточных организмов, где есть половые клетки, служащие для размножения, и соматические клетки (клетки тела). Соматические клетки различаются по строению и функциям – существуют нервные, костные, мышечные, секреторные клетки. Размеры клеток могут варьироваться от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса в скорлупе). В живом организме находятся миллиарды разнообразных клеток (до 1015), форма которых может быть самой причудливой (паук, звезда, снежинка и пр.).

Все клетки состоят из трех основных частей: плазматической мембраны, контролирующей переход вещества из окружающей среды в клетку и обратно; цитоплазмы с разнообразной структурой и клеточного ядра, в котором содержится генетическая информация. Кроме того, все животные и некоторые растительные клетки содержат центриоли – цилиндрические структуры, образующие клеточные центры. У растительных клеток также есть клеточная стенка (оболочка) и пластиды – специализированные структуры клеток, часто содержащие пигмент, от которого зависит окраска клетки.

Клетки растут и размножаются путем деления на две дочерние клетки. Существует два способа деления клеток. Митоз – это такое деление клеточного ядра, при котором образуются два дочерних ядра с набором хромосом, идентичным набору родительской клетки. При этом дочерним клеткам передается полный набор хромосом, несущих генетическую информацию. После расхождения дочерние нити ДНК превращаются в хромосомы, образуя характерные для данного организма структуры. Этот способ размножения характерен для всех клеток, кроме половых.

Мейоз – это деление клеточного ядра с образованием четырех дочерних ядер, каждое из которых содержит вдвое меньше хромосом, чем исходное ядро. Этот механизм клеточного деления в природе встречается только при подготовке к половому размножению, при образовании половых клеток (гамет). При слиянии гамет в процессе оплодотворения получается опять диплоидный набор хромосом. Этот способ размножения характерен только для половых клеток.

Многоклеточные организмы также развиваются из одной клетки – яйца, но в процессе его деления клетки видоизменяются, что приводит к появлению множества разных клеток – мышечных, нервных, кровяных и т. д. Разные клетки синтезируют разные белки. Тем не менее, в каждой клетке многоклеточного организма есть полная генетическая информация для построения всех белков, нужных для этого организма.

В зависимости от типа клеток все организмы делятся на две группы:

Прокариоты – клетки, лишенные ядра. В них молекулы ДНК не окружены ядерной мембраной и не организованы в хромосомы. К ним относятся бактерии.

Эукариоты – клетки, содержащие ядра. Кроме того, в них есть митохондрии – органеллы, в которых идет процесс окисления. К эукариотам относятся простейшие, грибы, растения и животные, поэтому они могут быть одноклеточными и многоклеточными.

Изучая живую клетку, ученые обратили внимание на существование двух основных типов ее питания, что позволило все организмы разделить на два вида:

Автотрофные организмы – они не нуждаются в органической пище и могут жить за счет ассимиляции углекислоты (бактерии) или фотосинтеза (растения), т. е. сами производят необходимые им питательные вещества;

Гетеротрофные организмы – это все организмы, которые не могут обходиться без органической пищи.

Многоклеточные организмы. Все многоклеточные организмы делятся на три царства: грибы, растения и животные. Их жизнедеятельность, а также работа отдельных частей многоклеточных организмов изучается физиологией. Эта наука рассматривает механизмы действия различных функций живого организма, их связь между собой, регуляцию и приспособление к внешней среде, происхождение и становление в процессе эволюции и индивидуального развития особи. По сути дела, это и есть процесс онтогенеза – развитие организма от рождения до смерти, при котором происходит рост, перемещение отдельных структур, дифференциация и усложнение организма. Этот процесс описывается на основе знаменитого биогенетического закона, сформулированного Эрнстом Геккелем (1834–1919), автором термина «онтогенез».

Биогенетический закон утверждает, что онтогенез в краткой форме повторяет филогенез, т. е. отдельный организм в своем индивидуальном развитии в сокращенной форме проходит все стадии развития своего вида. Таким образом, онтогенез представляет собой реализацию наследственной информации, закодированной в зародышевой клетке, а также проверку согласованности всех систем организма во время его работы и приспособления к окружающей среде.

Все многоклеточные организмы состоят из органов и тканей.

Ткани – это группа физически объединенных клеток и межклеточных веществ, сходных по строению и функции. Их изучение является предметом гистологии. Ткани могут образовываться как из одинаковых, так и из разных специализированных клеток. Например, у животных из одинаковых клеток построен плоский эпителий, а из разных клеток – мышечная, нервная, соединительная ткани.

Органы – это относительно крупные функциональные части организма, выполняющие определенную функцию, состоящие из клеток различных типов и управляемые общим механизмом организма. В свою очередь, органы входят в состав более крупных единиц – систем организма. Среди них выделяют нервную, пищеварительную, сердечнососудистую, дыхательную и др. системы. Каждая из этих систем включает действующие органы и иерархию управляющих механизмов.

Собственно живой организм можно представить как комплекс физиологических систем, обеспечивающих его гомеостаз и адаптации. Он образуется в результате взаимодействия генотипа (совокупности генов одного организма) с фенотипом (комплексом внешних признаков организма, сформировавшихся в ходе его индивидуального развития). Таким образом, организм представляет собой стабильную систему внутренних органов и тканей, существующих во внешней среде. Однако, поскольку общая теория онтогенеза пока еще не создана, многие процессы, происходящие во время развития организма, еще не получили своего полного объяснения.

  • IV. Биогенетические методы, способствующие увеличению продолжительности жизни
  • IV. Действия санитаров в случае угрозе жизни пациента или врача
  • PS.Эта формула применяется в том случае, когда уровень инфляции имеет стабильную величину, а период измерения инфляции имеет регулярную периодичность.
  • ОКО И ДУХ" ("L"Œil et l"esprit". Paris, 1964) - по­следняя изданная при жизни работа Мерло-Понти

  • Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    1. Уровни организации жизни

    Уровни организации жизни:

    молекулярно-генетический,

    клеточный,

    тканевой,

    органный,

    организменный,

    популяционно-видовой,

    биогеоценотический

    биосферный.

    Клетка - структурно-функциональная элементарная единица строения и жизнедеятельности всех организмов (кроме вирусов, о которых нередко говорят, как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению (животные, растения и грибы), либо является одноклеточным организмом (многие простейшие и бактерии).

    3. Молекулярно-генетический уровень организации жизни. Характеристика

    Компоненты: - Молекулы неорганических и органических соединений

    Молекулярные комплексы

    Основные процессы:

    Объединение молекул в особые комплексы

    Кодирование и передача генетической информации

    4. Строение клеточной мембраны

    Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды -- фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») части. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные -- наружу. Мембраны -- структуры инвариабельные, весьма сходные у разных организмов.

    Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7--8 нм.

    Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

    5. Характеристика клеточного уровня организации жизни. Теория Шлейдена-Шванна

    Клеточный уровень представлен разнообразными органическими клетками: растительные и животные клетки общие по происхождению, клетки являются структурной и функциональной основой всех живых существ. Теория Шлейдена-Шванна:

    Все животные и растения состоят из клеток.

    Растут и развиваются растения и животные путём возникновения новых клеток.

    Клетка является самой маленькой единицей живого, а целый организм -- это совокупность клеток.

    6. Характеристика тканевого уровня организации жизни

    Тканевый уровень представлен тканями, объединяющими клетки определённого строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточностью. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференцировки клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, нервная). У растений различают меристематическую, защитную, основную и проводящую ткани. На этом уровне происходит специализация клеток.

    7. Функции клеточной мембраны

    · барьерная -- обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.

    · транспортная -- через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.

    · Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

    · При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

    · Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТ Фаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

    · матричная -- обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.

    · механическая -- обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных -- межклеточное вещество.

    · энергетическая -- при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;

    · рецепторная -- некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

    · Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

    · ферментативная -- мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

    · осуществление генерации и проведения биопотенциалов.

    · С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

    · маркировка клетки -- на мембране есть антигены, действующие как маркеры -- «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

    8. Характеристика органного уровня организации жизни

    У многоклеточных организмов объединение нескольких одинаковых тканей, сходных по строению, происхождению и функциям, образует органный уровень. В составе каждого органа встречается несколько тканей, но среди них одна наиболее значительная. Отдельный орган не может существовать как целостный организм. Несколько органов, сходных по строению и функциям, объединяясь, составляют систему органов, например пищеварения, дыхания, кровообращения и т. д.

    9. Характеристика организменного уровня организации жизни

    Растения (хламидомонада, хлорелла) и животные (амеба, инфузория и т. д.), тела которых состоят из одной клетки, представляют собой самостоятельный организм. А отдельная особь многоклеточных организмов считается как отдельный организм. В каждом отдельном организме происходят все жизненные процессы, характерные для всех живых организмов, -- питание, дыхание, обмен веществ, раздражимость, размножение и т. д. Каждый самостоятельный организм оставляет после себя потомство. У многоклеточных организмов клетки, ткани, органы и системы органов не являются отдельным организмом. Только целостная система органов, специализированно выполняющих различные функции, образует отдельный самостоятельный организм. Развитие организма, начиная с оплодотворения и до конца жизни, занимает определенный промежуток времени. Такое индивидуальное развитие каждого организма называется онтогенезом. Организм может существовать в тесной взаимосвязи с окружающей средой.

    10. Характеристика популяционно-видового уровня жизни

    Совокупность особей одного вида пли группы, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида, составляет популяцию. На популяционном уровне осуществляются простейшие эволюционные преобразования, что способствует постепенному появлению нового вида.

    11. Характеристика биогеоценотического уровня жизни

    Совокупность организмов разных видов и различной сложности организации, приспособленных к одинаковым условиям природной среды, называется биогеоценозом, или природным сообществом. В состав биогеоценоза входят многочисленные виды живых организмов и условия природной среды. В природных биогеоценозах накапливается энергия и передается от одного организма к другому. Биогеоценоз включает неорганические, органические соединения и живые организмы.

    12. Характеристика биосферного уровня организации жизни

    Совокупность всех живых организмов на нашей планете и общей природной среды их обитания составляет биосферный уровень. На биосферном уровне современная биология решает глобальные проблемы, например определение интенсивности образования свободного кислорода растительным покровом Земли или изменения концентрации углекислого газа в атмосфере, связанные с деятельностью человека. Главную роль в биосферном уровне выполняют " живые вещества", т. е. совокупность живых организмов, населяющих Землю. Также в биосферном уровне имеют значение " биокосные вещества", образовавшиеся в результате жизнедеятельности живых организмов и " косных" веществ, т. е. условий окружающей среды. На биосферном уровне происходит круговорот веществ и энергии на Земле с участием всех живых организмов биосферы.

    13. Клеточные органоиды и их функции

    Плазматическая мембрана - тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет продукты жизнедеятельности. Цитоплазма - внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности. Эндоплазматическая сеть - сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. Рибосомы -- тельца, расположенные на ЭПС или в цитоплазме, состоят из РНК и белка, участвуют в синтезе белка. ЭПС и рибосомы - единый аппарат синтеза и транспорта белков. Митохондрии - органоиды, отграниченные от цитоплазмы двумя мембранами. В них окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. Увеличение поверхности внутренней мембраны, на которой расположены ферменты за счет крист АТФ -- богатое энергией органическое вещество. Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в клетке - главная особенность растительного организма. Хлоропласты - пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды. Отграничение хлоропластов от цитоплазмы двумя мембранами, многочисленные выросты - граны на внутренней мембране, в которых расположены молекулы хлорофилла и ферменты. Комплекс Гольджи - система полостей, отграниченных от цитоплазмы мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов. Лизосомы - тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки. Вакуоли - полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке. Ядро - главная часть клетки, покрытая снаружи двух мембранной, пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются из него через поры. Хромосомы -- носители наследственной информации о признаках организма, основные структуры ядра, каждая из которых состоит из одной молекулы ДНК в соединении с белками. Ядро -- место синтеза ДНК, и-РНК, р-РНК.

    14. Лизосомы. Характеристика

    Имеют вид мешочка. Характерной чертой лизосом является то, что они содержат около 40 гидролитических ферментов: протеиназы, нуклеазы, гликозидазы, фосфорилазы, фосфатазы, сульфитазы, оптимум действия которых осуществляется при рН 5. В лизосомах кислое значение среды сохраняется из-за наличия в их мембранах H+ помпы, зависимой от АТФ. Одновременно с этим, в мембране лизосом имеются белки-переносчики для транспорта из лизосом в гиалоплазму мономеров расщепленных молекул: аминокислот, сахара, нуклеотидов, липидов. Самопереваривание лизосом не происходит из-за того, что мембранные элементы лизосом защищены от действия кислых гидролаз олигосахаридными участками, которые или не узнаются лизосомными ферментами, либо просто мешают гидролазам взаимодействовать с ними. При рассмотрении в электронном микроскопе видно, что фракция лизосом состоит из очень пестрого класса пузырьков размером 0,2-0,4 мкм (для клеток печени), ограниченных одиночной мембраной (толщина ее около 7 нм), с очень разнородным содержанием внутри. Во фракции лизосом встречаются пузырьки с гомогенным, бесструктурным содержимым, встречаются пузырьки, заполненные плотным веществом, содержащим в свою очередь вакуоли, скопления мембран и плотных однородных частиц; часто можно видеть внутри лизосом не только участки мембран, но и фрагменты митохондрий и ЭР. Иными словами, эта фракция по морфологии оказалась крайне неоднородной, несмотря на постоянство присутствия гидролаз.

    15. Митохондрии. Характеристика

    Впервые митохондрии обнаружены в виде гранул в мышечных клетках в 1850 году. Число митохондрий в клетке непостоянно. Их особенно много в клетках, в которых потребность в кислороде велика. По своему строению они представляют собой цилиндрические органеллы, встречающиеся в эукариотической клетке в количестве от нескольких сот до 1--2 тысяч и занимающие 10--20 % её внутреннего объёма. Сильно варьируют так же размеры (от 1 до 70 мкм) и форма митохондрий. При этом ширина этих органелл относительно постоянна (0,5--1 мкм). Способны изменять форму. В зависимости от того, в каких участках клетки в каждый конкретный момент происходит повышенное потребление энергии, митохондрии способны перемещаться по цитоплазме в зоны наибольшего энергопотребления, используя для движения структуры цитоскелета эукариотической клетки. Альтернативой множеству разрозненных небольших митохондрий, функционирующих независимо друг от друга и снабжающих АТФ небольшие участки цитоплазмы, является существование длинных и разветвлённых митохондрий, каждая из которых может энергетически обеспечивать отдалённые друг от друга участки клетки (например, у одноклеточных зелёных водорослей Chlorella). Вариантом такой протяжённой системы может также являться упорядоченное пространственное объединение множества митохондрий (хондриом или митохондрион), обеспечивающее их кооперативную работу и встречающееся как у одноклеточных, так и у многоклеточных организмов. Особенно сложно этот тип хондриома устроен в скелетных мышцах млекопитающих, где группы гигантских разветвлённых митохондрий связаны друг с другом с помощью межмитохондриальных контактов (ММК). Последние образованы плотно прилегающими друг к другу наружными митохондриальными мембранами, в результате чего межмембранное пространство в этой зоне имеет повышенную электронную плотность. Особенно обильно ММК представлены в клетках сердечных мышц, где они связывают множественные отдельные митохондрии в согласованную работающую кооперативную систему.

    16. Комплекс Гольджи

    это сложная сеть полостей, трубочек и пузырьков вокруг ядра. Он состоит из трех основных компонентов: группы мембранных полостей, системы трубочек, отходящих от полостей, и пузырьков на концах трубочек. Выполняет следующие функции: В пузырьках накапливаются вещества, которые синтезируются и транспортируются по ЭПС, здесь они подвергаются химическим изменениям. Измененные вещества упаковываются в мембранные пузырьки, которые выделяются клеткой в виде секретов. Часть пузырьков выполняет функцию лизосом, кото­рые участвуют в переваривании частиц, попавших в клетку в результате фаго- и пиноцитоза.

    17. Клеточный центр

    Клеточный центр - немембранный органоид, главный центр организации микротрубочек (ЦОМТ) и регулятор хода клеточного цикла в клетках эукариот. Впервые обнаружена в 1883 году Теодором Бовери, который назвал её «особым органом клеточного деления». Центросома играет важнейшую роль в клеточном делении, однако, наличие клеточного центра в клетке не является необходимым для митоза. В подавляющем большинстве случаев в клетке в норме присутствует только одна центросома. Аномальное увеличение числа центросом характерно для клеток злокачественных опухолей. Более одной центросомы в норме характерно для некоторых полиэнергидных простейших и для синцитиальных структур. У многих живых организмов (животных и ряда простейших) центросома содержит пару центриолей, цилиндрических структур, расположенных под прямым углом друг к другу. Каждая центриоль образована девятью триплетами микротрубочек, расположенными по кругу, а также ряда структур, образованных центрином, ценексином и тектином. В интерфазе клеточного цикла центросомы ассоциированы с ядерной мембраной. В профазе митоза ядерная мембрана разрушается, центросома делится, и продукты ее деления (дочерние центросомы) мигрируют к полюсам делящегося ядра. Микротрубочки, растущие из дочерних центросом, крепятся другим концом к так называемым кинетохорам на центромерах хромосом, формируя веретено деления. По завершении деления в каждой из дочерних клеток оказывается только по одной центросоме. Помимо участия в делении ядра, центросома играет важную роль в формировании жгутиков и ресничек. Центриоли, расположенные в ней, выполняют функцию центров организации для микротрубочек аксонем жгутиков. У организмов, лишенных центриолей (например, у сумчатых и базидиевых грибов, покрытосеменных растений), жгутики не развиваются. У планарий и, возможно, других плоских червей нет центросом.

    18. Эргастоплазма

    Эргастоплазма (от греч. ergastikуs - деятельный и плазма -базофильные (окрашивающиеся основными красителями) участки животных и растительных клеток, богатые рибонуклеиновой кислотой (например, глыбки Берга в клетках печени, тельца Ниссля в нейронах). В электронном микроскопе эти участки наблюдаются как упорядоченно расположенные элементы гранулярной эндоплазматической сети.

    19. Рибосома

    Рибосома - важнейший немембранный органоид живой клетки сферической или слегка эллипсоидной формы, диаметром от 15--20 нанометров (прокариоты) до 25--30 нанометров (эукариоты), состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК). Этот процесс называется трансляцией.

    20. Органоиды

    Органеллы -- в цитологии: постоянные специализированные структуры в клетках живых организмов. Каждый органоид осуществляет определённые функции, жизненно необходимые для клетки. Термин «Органоиды» объясняется сопоставлением этих компонентов клетки с органами многоклеточного организма. Органоиды противопоставляют временным включениям клетки, которые появляются и исчезают в процессе обмена веществ. Иногда органоидами считают только постоянные структуры клетки, расположенные в её цитоплазме. Часто ядро и внутриядерные структуры (например, ядрышко) не называют органоидами. Клеточную мембрану, реснички и жгутики тоже обычно не причисляют к органоидам. Рецепторы и прочие мелкие, молекулярного уровня, структуры, органоидами не называют. Граница между молекулами и органоидами не очень четкая. Так, рибосомы, которые обычно однозначно относят к органоидам, можно считать и сложным молекулярным комплексом. Все чаще к органоидам причисляют и другие подобные комплексы сравнимых размеров и уровня сложности -- протеасомы, сплайсосомы и др. В то же время сравнимые по размерам элементы цитоскелета (микротрубочки, толстые филаменты поперечнополосатых мышц и т. п.) обычно к органоидам не относят. Степень постоянства клеточной структуры -- тоже ненадёжный критерий её отнесения к органоидам. Так, веретено деления, которое хотя и не постоянно, но закономерно присутствует во всех эукариотических клетках, обычно к органоидам не относят, а везикулы, которые постоянно появляются и исчезают в процессе обмена веществ -- относят.

    21. Схема высвобождения энергии из АТФ

    22. Клетка с органоидами

    23. Хроматин

    Хроматин - это вещество хромосом -- комплекс ДНК, РНК и белков. Хроматин находится внутри ядра клеток эукариот и входит в состав нуклеотида у прокариот. Именно в составе хроматина происходит реализация генетической информации, а также репликация и репарация ДНК. Основную массу хроматина составляют белки гистоны. Гистоны являются компонентом нуклеосом, -- надмолекулярных структур, участвующих в упаковке хромосом. Нуклеосомы располагаются довольно регулярно, так что образующаяся структура напоминает бусы. Нуклеосома состоит из белков четырех типов: H2A, H2B, H3 и H4. В одну нуклеосому входят по два белка каждого типа -- всего восемь белков. Гистон H1, более крупный, чем другие гистоны, связывается с ДНК в месте её входа на нуклеосому. Нить ДНК с нуклеосомами образует нерегулярную соленоид-подобную структуру толщиной около 30 нанометров, так называемую 30 нм фибриллу. Дальнейшая упаковка этой фибриллы может иметь различную плотность. Если хроматин упакован плотно его называют конденсированным или гетерохроматином, он хорошо видим под микроскопом. ДНК, находящаяся в гетерохроматине не транскрибируется, обычно это состояние характерно для незначащих или молчащих участков. В интерфазе гетерохроматин обычно располагается по периферии ядра (пристеночныйгетерохроматин). Полная конденсация хромосом происходит перед делением клетки. Если хроматин упакован неплотно, его называют эу- или интерхроматином. Этот вид хроматина гораздо менее плотный при наблюдении под микроскопом и обычно характеризуется наличием транскрипционной активности. Плотность упаковки хроматина во многом определяется модификациями гистонов -- ацетилированием и фосфорилированием. Считается, что в ядре существуют так называемые функциональные домены хроматина (ДНК одного домена содержит приблизительно 30 тысяч пар оснований), то есть каждый участок хромосомы имеет собственную «территорию». Вопрос пространственного распределения хроматина в ядре изучен пока недостаточно. Известно, что теломерные (концевые) и центромерные (отвечающие за связывание сестринских хроматид в митозе) участки хромосом закреплены на белках ядернойламины.

    24. Хромосомы

    Хромосомы - нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена большая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. Хромосомы чётко различимы в световом микроскопе только в период митотического или мейотического деления клетки. Набор всех хромосом клетки, называемый кариотипом, является видоспецифичным признаком, для которого характерен относительно низкий уровень индивидуальной изменчивости. Хромосома образуется из единственной и чрезвычайно длинной молекулы ДНК, которая содержит линейную группу множества генов. Необходимыми функциональными элементами хромосомы эукариот являются центромера, теломеры и точки начала инициации репликации. Точки начала репликации (сайты инициации) и теломеры, находящиеся на концах хромосом, позволяют молекуле ДНК эффективно реплицироваться, тогда как в центромерах сестринские молекулы ДНК прикрепляются к митотическому веретену деления, что обеспечивает их точное расхождение по дочерним клеткам в митозе. Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия всё чаще говорят о бактериальных или вирусных хромосомах. Поэтому, по мнению Д. Е. Корякова и И. Ф. Жимулёва, более широким определением является определение хромосомы как структуры, которая содержит нуклеиновую кислоту и функция которой состоит в хранении, реализации и передаче наследственной информации. Хромосомы эукариот -- это ДНК-содержащие структуры в ядре, митохондриях и пластидах. Хромосомы прокариот -- это ДНК-содержащие структуры в клетке без ядра. Хромосомы вирусов -- это молекула ДНК или РНК в составе капсида.

    25. Эукариоты и прокариоты. Характеристика

    Эукариоты, или ядерные -- домен (надцарство) живых организмов, клетки которых содержат ядра. Все организмы, кроме бактерий и архей, являются ядерными. Животные, растения, грибы, а также группы организмов под общим названием протисты -- все являются эукариотическими организмами. Они могут быть одноклеточными и многоклеточными, но все имеют общий план строения клеток. Считается, что все эти столь несхожие организмы имеют общее происхождение, поэтому группа ядерных рассматривается как монофилетический таксон наивысшего ранга. Согласно наиболее распространённым гипотезам, эукариоты появились 1,5--2 млрд лет назад. Важную роль в эволюции эукариот сыграл симбиогенез -- симбиоз между эукариотической клеткой, видимо, уже имевшей ядро и способной к фагоцитозу, и поглощёнными этой клеткой бактериями -- предшественниками митохондрий и пластидов.

    Прокариоты, или доядерные -- одноклеточные живые организмы, не обладающие (в отличие отэукариот) оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Для клеток прокариот характерно отсутствие ядерной оболочки, ДНК упакована без участия гистонов. Тип питания осмотрофный и автотрофный (фотосинтез и хемосинтез). Единственная крупная кольцевая (у некоторых видов -- линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток -- митохондрии и пластиды. Изучение бактерий привело к открытию горизонтального переноса генов, который был описан в Японии в 1959 г. Этот процесс широко распространен среди прокариот, а также у некоторых эукариот. Открытие горизонтального переноса генов у прокариот заставило по-другому взглянуть на эволюцию жизни. Ранее эволюционная теория базировалась на том, что виды не могут обмениваться наследственной информацией. Прокариоты могут обмениваться генами между собой непосредственно (конъюгация, трансформация) а также с помощью вирусов -- бактериофагов (трансдукция).

    26. Кариосома. Характеристика

    1). Сравнительно крупное, расположенное в центре ядра, шаровидное ядрышко. 2). Хроматиновые утолщения и узелки ядерной сети, отдающие в начале клеточного деления свое вещество развивающимся хромосомам. 3). Округлые плотные хроматиновые тельца, представляющие собой отдельные хромосомы или их группы, сохраняющиеся в ядре после окончания клеточного деления. 4). Более крупные шарообразные тела, содержащие на определенной стадии весь хроматин ядра и дающие начало всей совокупности хромосом.

    27. Размеры ядра

    Ядра обычно имеют обычно шаровидную или яйцевидную форму; диаметр первых равен приблизительно 10 мкм, а длина вторых - 20 мкм.

    Ядро (лат. nucleus) -- это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК), осуществляющий основные функции: хранение, передача и реализация наследственной информации с обеспечением синтеза белка. Ядро состоит из хроматина, ядрышка, кариоплазмы (или нуклеоплазмы) и ядерной оболочки.

    29. Кем и когда было открыто ядро

    В 1831 году Роберт Броун описывает ядро и высказывает предположение, что оно является постоянной составной частью растительной клетки.

    30. Энуклеация

    Энуклеация - (от лат. Enucleo - вынимаю ядро, очищаю от скорлупы) удаление клеточного ядра.

    Один из способов удаления опухолей и органов.

    31. Функции ядра. Отличия от ядерного вещества

    Функции ядра: 1) обмен веществ; 2) размножение; 3) хранение, переработка и передача наследственной информации; 4) регенеративная.

    В отличие от оформленного ядра, ядерное вещество не выполняет двух функций: размножение и регенерация.

    32. Кем и когда был открыт митоз

    Первые описания фаз митоза и установление их последовательности были предприняты в 70--80-х годах XIX века. В 1878 году немецкий гистолог Вальтер Флемминг для обозначения процесса непрямого деления клетки ввёл термин «митоз». Подробно изучен был немецким гистологом Вейсманом в 1888 году.

    Митоз - непрямое деление, универсальный способ деления незрелых половых и соматических клеток с промежуточным удвоением диплоидного набора хромосом до тетраплоидного и его последущим эквивалентным распределениям по 2 образовавшимся дочерних клеток с идентичным материнским диплоидным набором хромосом.

    34. Чем отличается митоз от амитоза и эндомитоза

    Митоз - это процесс непрямого деления.

    Амитоз - это процесс прямого деления клети.

    Эндомитоз - процесс удвоения числа хромосом в ядрах клеток многих протистов, растений и животных, за которым не следует деление ядра и самой клетки.

    35. Характеристика интерфазы митоза. Периоды: G1, S, G2

    Интерфаза - фаза относительного покоя клетки. Клетка на этом этапе хотя и не делится, однако активно растет, формирует свои структуры, синтезирует энергетически богатые химические вещества и готовится к предстоящему делению.

    Период (фаза) G1 (G1 period) [греч. periodos -- круговращение; англ. g(ap) -- промежуток, интервал] -- этап клеточного цикла (этап интерфазы), во время которого происходит активный рост и функционирование клетки, обусловленные возобновлением транскрипции и накоплением синтезированных белков, а также подготовка к синтезу ДНК; фаза роста, предшествующая периоду репликации ДНК.

    Период (фаза) S (S period) [греч. periodos -- круговращение; англ. (synthesis) -- синтез] -- этап клеточного цикла (этап интерфазы), во время которого происходят репликация ДНК и удвоение материала хромосом; предшествует периоду G2

    Период (фаза) G2 (G2 period) [греч. periodos -- круговращение; англ. (gap) -- промежуток, интервал] -- этап клеточного цикла, начинающийся после репликации ДНК (периода S) и предшествующий митозу; в этот период происходит подготовка клетки к делению, осуществляется синтез белков веретена деления.

    36. Изображение ранней и поздней профазы митоза

    Под номером 4 - ранняя профаза

    Под номером 5 - поздняя профаза

    37. Изображение метафазы митоза

    38. Изображение анафазы митоза

    39. Изображение телофазы митоза

    40. Изображение всех фаз митоза

    41. Характеристика веретена деления

    Веретено деления - палочковидная система микротрубочек в цитоплазме клетки в процессе митоза или мейоза. Хромосомы прикреплены к выпуклости веретена деления (экватору). Веретено деления вызывает расхождение хромосом, заставляя клетки делиться.

    42. Явление осмоса. Характеристика. Осмотическое давление. Определение

    Осмос - процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону большей концентрации растворённого вещества (меньшей концентрации растворителя).

    Явление осмоса наблюдается в тех средах, где подвижность растворителя больше подвижности растворённых веществ. Важным частным случаем осмоса является осмос через полупроницаемую мембрану. Полупроницаемыми называют мембраны, которые имеют достаточно высокую проницаемость не для всех, а лишь для некоторых веществ, в частности, для растворителя. (Подвижность растворённых веществ в мембране стремится к нулю). Как правило, это связано с размерами и подвижностью молекул, например, молекула воды меньше большинства молекул растворённых веществ.

    Осмотическое давление (обозначается р) -- избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану (осмос). Это давление стремится уравнять концентрации обоих растворов вследствие встречной диффузии молекул растворённого вещества и растворителя.

    43. Плазмолиз. Характеристика

    Плазмолиз - отделение протопласта от оболочки под действием на клетку гипертонического раствора. Плазмолиз характерен главным образом для клеток растений, имеющих прочную целлюлозную оболочку.

    44. Характеристика растворов по концентрации солей в цитоплазме

    1) изотонический раствор - раствор, осмотическое давление которого равно осмотическому давлению плазмы крови; например, 0,9 % раствор хлорида натрия, 5% водный раствор глюкозы.

    2) гипертонический раствор - это раствор, осмотическое давление которого выше осмотического давления плазмы крови (раствор с более высокой концентрацией растворенных веществ)

    3) гипотонический раствор - раствор, осмотическое давление которого ниже нормального осмотического давления плазмы крови (раствор с меньшей концентрацией растворенных веществ)

    45. Характеристика физиологического раствора

    Физиологический раствор «физраствор» - это 0,9 % водный раствор NaCl (хлорида натрия) -простейший изотонический раствор. Физиологический раствор необходим для восполнения жидкости в организме в случае обезвоживания. Важным свойством физиологического раствора является его антимикробное свойство. В связи с этим он широко используется при лечении простудных заболеваний.

    46. Фен (признак). Определение

    Фен - (от греч. phaino - являю, обнаруживаю) (биол.), дискретный, генетически обусловленный признак организма.

    47. Ген. Определение

    Ген - структурная и функциональная единица наследственности живых организмов. Ген представляет собой участок ДНК, задающий последовательность определённого полипептида либо функциональной РНК.

    48.Фенотип. Определение

    Фенотип -- совокупность характеристик, присущих индивиду на определённой стадии развития

    49. Генотип. Определение

    Генотип -- совокупность генов данного организма, которая, в отличие от понятия генофонд, характеризует особь, а не вид.

    50. Аллель. Определение

    Аллель (греч. allelon - друг друга, взаимно), или аллеломорфы - альтернативная форма структурного состояния гена, от которой зависит проявление наследственного признака (аллели гомологичных хромосом расположены в одном локусе).

    51. Какие признаки называются доминантными, а какие рецессивными

    Доминантный признак - признак, проявляющийся у гибридов первого поколения при скрещивании чистой линии.

    Рецессивный признак - признак, не проявляющийся у гетерозиготных особей вследствие подавления проявления рецессивного аллеля.

    52. Написать

    а) генотип, состоящий из трех аллелей: ААВВСС

    б) дать полное название этому генотипу: гомозиготный по доминантному признаку по трем аллелям

    в) гамета АВС

    53. Написать

    а) любую гамету, несущую три признака: АВС

    б) все варианты генотипов, образующих эту гамету: ААВВСС; АаВВСС; АаВвСС; АаВвСс; АаВВСс; ААВвСС; ААВВСс; ААВвСс;

    54. Гомозиготное и гетерозиготное состояние генотипа. Определение. Примеры

    Гомозиготное состояние генотипа - его несет диплоидный организм, несущий единичные аллели в гомозиготных хромосомах. (АА, аа)

    Гетерозиготное состояние генотипа - присуще всякому гибридному организму состояние, при котором его гомологичные хромосомы несут разные аллели того или иного гена.(Аа, Вв)

    55. Дать название генотипу

    ААВbСсdd - гомозиготное состояние генотипа по доминантному признаку по первой паре признаков(аллели) и по рецессивному признаку по четвертой аллели. Гетерозиготное состояние генотипа по второй и третьей аллели.

    56. Дать название генотипу

    АаВbСсDd - гетерозиготное состояние генотипа по четырем парам признаков.(аллелям)

    57. Наследование фенотипа или генотипа

    В отличие от фенотипа, генотип передается по наследству, так как он наследственно детерминирован (определен)

    генетический клеточный митоз хромосома

    58. Как называются половые и неполовые хромосомы

    Гоносомы - это половые хромосомы, хромосомы, набор которых отличает мужские и женские особи.

    Аутосомы - это неполовые хромосомы. Хромосомы не связанные с половыми признаками. Имеются как у мужского так и женского организма.

    59. Перечислите типы наследования

    1) Аутосомно-доминантный тип наследования

    2) Аутосомно-рецессивный тип наследования

    60. Формулу определения количества типов гамет, образуемое генотипом

    Определение числа типов гамет проводится по формуле, где n - число пар генов в гетерозиготном состоянии.

    61. Первый закон Менделя

    Закон единообразия гибридов первого поколения: при моногибридном скрещивание все потомство в первом поколение характеризуется единообразием по фенотипу и генотипу.

    62.Второй закон Менделя

    Закон расщепления: при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

    63.Третий закон Менделя

    Закон независимого наследования: при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).

    64.Определение всех трех законов Менделя

    Ответ в 61,62,63 вопросе.

    65. Какое расщепление наблюдается во втором поколении при выведение третьего закона Менделя

    3:1 - фенотип

    1:2:1 - генотип

    66. Общая формула доминантных - доминантных и доминантных - рецессивных

    Общая формула доминантных - доминантных: А_В_

    Общая формула доминантных - рецессивных: А_вв

    67. Закономерности в решетке Пеннета

    Решетка Пеннета представляет собой графическую запись результатов различных скрещиваний. По горизонтали вписываются гаметы одного родителя, по вертикали - другого. В ячейках таблицы вписываем генотипы потомства, которые получились при слиянии соответствующих гамет.

    68. «Характер» законов Менделя

    Законы Менделя носят статистический характер: отклонение от теоретически ожидаемого расщепления тем меньше, чем больше число наблюдений. Каждому генотипу соответствует определенный фенотип (100%-ная пенетрантность признаков). У всех особей с данным генотипом признак выражен в равной степени (100%-ная экспрессивность признаков). Изучаемые признаки не сцеплены с полом. Жизнеспособность особей не зависит от их генотипа и фенотипа.

    69. Все возможные варианты генотипов "желтых-гладких"

    ААВВ, АаВв, АаВВ, ААВв, - варианты "желтых-гладких"

    70. Дополнения к законам Менделя. Характеристика

    Далеко не все результаты скрещиваний, обнаруженных при исследованиях укладывались в законы Менделя, отсюда и возникли дополнения к законам.

    Доминирующий признак в некоторых случаях может проявляться не полно или и вовсе отсутствовать. При этом имеет место та называемое промежуточное наследование, когда ни один из двух взаимодействующих генов не доминирует над другим и их действие проявляется в генотипе животного в равной степени, один признак как бы разбавляет другой.

    В качестве примера можно привести тонкинезийских кошек. При скрещивании сиамских кошек с бурманскими рождаются котята более темные, чем сиамы, но более светлые чем бурмы - такой промежуточный окрас получил название тонкинез.

    Наряду с промежуточным наследованием признаков наблюдается различное взаимодействие генов, то есть гены, отвечающие за одни признаки могут влиять на проявление других признаков:

    Взаимовлияние - например ослабление черного окраса под действием гена сиамского окраса у кошек, являющихся его носителями.

    Комплементарность - проявление признака возможно только под влиянием двух или более генов. Например, все табби окрасы проявляются только при наличии доминантного гена агути.

    Эпистаз - действие одного гена полностью скрывает действие другого. Например доминантный ген белого окраса (W) скрывает любой окрас и рисунок, его называют так же эпистатическим белым.

    Полимерия - на проявление одного признака влияет целая серия генов. Например - густота шерсти.

    Плейотропия - один ген влияет на проявление серии признаков. Например, все тот же ген белого окраса (W) сцепленный с голубым цветом глаз провоцирует развитие глухоты.

    Так же распространенным отклонением, не противоречащим однако законам Менделя, являются сцепленные гены. То есть ряд признаков наследуются в определенном сочетании. Примером могут служить гены, сцепленные с полом - крипторхизм (самки являются его носителями), красный окрас (он передается только по Х хромосоме).

    71. Общая формула для генотипов

    Розовидной формы гребня;

    Гороховидной формы гребня;

    Ореховидной формы гребня

    Механизм наследования этих признаков имеют моногенный характер. Расщепление одинаково среди самцов и самок, ген не сцеплен с полом.

    Ген гребня необычной формы - В

    Ген простого гребня - в

    Общая формула генотипов: В_вв

    72. Нуклеиновые кислоты

    Нуклеиновые кислоты - природные высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах.

    В природе существуют нуклеиновые кислоты двух типов, различающихся по составу, строению и функциям. Одна из них содержит дезоксирибозу и названа дезоксирибонуклеиновой кислотой (ДНК). Другая содержит рибозу и названа рибонуклеиновой кислотой (РНК)

    73. Кем и когда была предложена модель ДНК

    Модель ДНК предложена в 1953 Дж. Уотсоном и Ф. Криком, за что им была присвоена Нобелевская премия.

    74. Что собой представляет модель ДНК

    Молекула ДНК - это двухцепочечная спираль, закрученная вокруг собственной оси. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой ковалентными связями, которые образуются между фосфатной группой одного нуклеотида и З"-спиртовой группой пентозы другого. Такие связи называются фосфодиэфирными. Фосфатная группа образует мостик между З"-углеродом одного пентозного цикла и 5"-углеродом следующего.

    Остов цепей ДНК образован, таким образом, сахарофосфатными остатками.

    Полинуклеотидная цепь ДНК закручена в виде спирали, напоминая винтовую лестницу и соединена с другой, комплементарной ей цепью с помощью водородных связей, образующихся между аденином и тимином (две связи), а также гуанином и цитозином (три связи). Нуклеотиды А и Т, Г и Ц называются комплементарными. В результате у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых -- числу цитидиловых. Эта закономерность получила название «правило Чаргаффа». Благодаря этому свойству последовательность нуклеотидов в одной цепи определяет их последовательность в другой. Такая способность к избирательному соединению нуклеотидов называется комплементарностъю, и это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы.

    75. Характеристика пуриновых и пиримидиновых азотистых оснований

    Пуриновые азотистые основания - органические природные соединения, производные пурина. К ним относятся аденин и гуанин. Они имеют прямое отношение к обменным процессам. Пиримидиновые азотистые основания - группы природных веществ, производные пиримидина. Биологически наиболее важными пиримидиновыми основаниями являются урацил, цитозин, тимин. Последовательность нуклеотидов одной цепи нуклеиновой кислоты полностью комплементарна последовательности нуклеотидов второй цепи. Поэтому, согласно правилу Чаргаффа (Эрвин Чаргафф в 1951 г. установил закономерности в соотношении пуриновых и пиримидиновых оснований в молекуле ДНК), число пуриновых оснований (А + G) равно числу пиримидиновых оснований (Т + С).

    76. Составные части нуклеотида

    Нуклеотид состоит из 3 составных частей: азотистое основание (пуриновое или пиримидиновое), моносахарид (рибоза или дезоксирибоза), остаток фосфорной кислоты.

    77. Комлементарность. Характеристика

    Комплементарность - свойство двойной спирали ДНК, согласно которому против аденина в противоположной цепи молекулы всегда стоит тимин, против гуанина - цитозин и наоборот, образуя водородные связи. Комплементарность очень важна для репликации ДНК.

    Комплементарность в молекулярной биологии, взаимное соответствие, обеспечивающее связь дополняющих друг друга структур (макромолекул, молекул, радикалов) и определяемое их химическими свойствами. К. возможна, «если поверхности молекул имеют комплементарные структуры, так что выступающая группа (или положительный заряд) на одной поверхности соответствуют полости (или отрицательному заряду) на другой. Иными словами, взаимодействующие молекулы должны подходить друг к другу, как ключ к замку» (Дж. Уотсон). К. цепей нуклеиновых кислот основана на взаимодействии входящих в их состав азотистых оснований. Так, только при расположении аденина (А) в одной цепи против тимина (Т) (или урацила -- У) в другой, а гуанина (Г) -- против цитозина (Ц), в этих цепях между основаниями возникают водородные связи. К. -- по-видимому, единственный и универсальный химический механизм матричного хранения и передачи генетической информации.

    78. Правило Чаргаффа

    Правила Чаргаффа -- система эмпирически выявленных правил, описывающих количественные соотношения между различными типами азотистых оснований в ДНК. Были сформулированы в результате работы группы биохимика Эрвина Чаргаффа в 1949--1951 гг.Соотношения, выявленные Чаргаффом для аденина (А), тимина (Т), гуанина (Г) и цитозина (Ц), оказались следующими:

    Количество аденина равно количеству тимина, а гуанина -- цитозину:

    Количество пуринов равно количеству пиримидинов:

    Количество оснований с аминогруппами в положении 6 равно количеству оснований с кетогруппами в положении 6:

    Вместе с тем, соотношение (A+Т):(Г+Ц) может быть различным у ДНК разных видов. У одних преобладают пары АТ, в других -- ГЦ.

    Правила Чаргаффа, наряду с данными рентгеноструктурного анализа, сыграли решающую роль в расшифровке структуры ДНК Дж. Уотсоном и Фрэнсисом Криком.

    79. Кодон из пуриновых азотистых оснований и комплиментарный ему антикодон

    80. Кодон. Определение

    Кодон (кодирующий тринуклеотид) -- единица генетического кода, тройка нуклеотидных остатков (триплет) в ДНК или РНК, обычно кодирующих включение одной аминокислоты. Последовательность кодонов в гене определяет последовательность аминокислот в полипептидной цепи белка, кодируемого этим геном.

    81. Антикодон. Определение

    Антикодон -- триплет (тринуклеотид), участок в транспортной рибонуклеиновой кислоте (тРНК), состоящий из трёх неспаренных (имеющих свободные связи) нуклеотидов. Спариваясь с кодоном матричной РНК (мРНК), обеспечивает правильную расстановку каждой аминокислоты при биосинтезе белка.

    82. Кем и когда был впервые просинтезирован белок

    Биосинтез белка был впервые искусственно осуществлен французским ученым Шакобом и Мано в 1957 году.

    83. Необходимые структуры и компоненты для биосинтеза белка

    Для непосредственного биосинтеза белка необходимо, чтобы в клетке присутствовали следующие компоненты:

    информационная РНК (иРНК) -- переносчик информации от ДНК к месту сборки белковой молекулы;

    рибосомы -- органоиды, где происходит собственно биосинтез белка;

    набор аминокислот в цитоплазме;

    транспортные РНК (тРНК), кодирующие аминокислоты и переносящие их к месту биосинтеза на рибосомы;

    ферменты, катализирующие процесс биосинтеза;

    АТФ -- вещество, обеспечивающее энергией все процессы.

    84. Под действием каких ферментов происходит биосинтез белка

    Биосинтез белка происходит под действием следующих ферментов: ДНК-полимераза, РНК-полимераза, интетаза.

    85. Биосинтез белка. Характеристика. Схема

    Биосинтез белка -- сложный многостадийный процесс синтеза полипептидной цепи из аминокислот, происходящий на рибосомах с участием молекул мРНК и тРНК. Процесс биосинтеза белка требует значительных затрат энергии.

    Биосинтез белка происходит в два этапа. В первый этап входит транскрипция и процессинг РНК, второй этап включает трансляцию. Во время транскрипции фермент РНК-полимераза синтезирует молекулу РНК, комплементарную последовательности соответствующего гена (участка ДНК). Терминатор в последовательности нуклеотидов ДНК определяет, в какой момент транскрипция прекратится. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, и редко происходит редактирование нуклеотидных последовательностей. После синтеза РНК на матрице ДНК происходит транспортировка молекул РНК в цитоплазму. В процессе трансляции информация, записанная в последовательности нуклеотидов, переводится в последовательность остатков аминокислот.

    Между транскрипцией и трансляцией молекула мРНК претерпевает ряд последовательных изменений, которые обеспечивают созревание функционирующей матрицы для синтеза полипептидной цепочки. К 5ґ-концу присоединяется кэп, а к 3ґ-концу поли-А хвост, который увеличивает длительность жизни иРНК. С появлением процессинга в эукариотической клетке стало возможно комбинирование экзонов гена для получения большего разнообразия белков, кодируемых единой последовательностью нуклеотидов ДНК, -- альтернативный сплайсинг.

    У прокариот мРНК может считываться рибосомами в аминокислотную последовательность белков сразу после транскрипции, а у эукариот она транспортируется из ядра в цитоплазму, где находятся рибосомы. Скорость синтеза белков выше у прокариот и может достигать 20 аминокислот в секунду. Процесс синтеза белка на основе молекулы мРНК называется трансляцией.

    Рибосома содержит 2 функциональных участка для взаимодействия с тРНК: аминоацильный (акцепторный) и пептидильный (донорный). Аминоацил-тРНК попадает в акцепторный участок рибосомы и взаимодействует с образованием водородных связей между триплетами кодона и антикодона. После образования водородных связей система продвигается на 1 кодон и оказывается в донорном участке. Одновременно в освободившемся акцепторном участке оказывается новый кодон, и к нему присоединяется соответствующий аминоацил-т-РНК.

    Во время начальной стадии биосинтеза белков, инициации, обычно метиониновый кодон узнаётся малой субъединицей рибосомы, к которой при помощи белковых факторов инициации присоединена метиониновая транспортная РНК (тРНК). После узнавания стартового кодона к малой субъединице присоединяется большая субъединица и начинается вторая стадия трансляции -- элонгация. При каждом движении рибосомы от 5" к 3" концу мРНК считывается один кодон путём образования водородных связей между тремя нуклеотидами (кодоном) мРНК и комплементарным ему антикодоном транспортной РНК, к которой присоединена соответствующая аминокислота. Синтез пептидной связи катализируется рибосомальной РНК (рРНК), образующей пептидилтрансферазный центр рибосомы. Рибосомальная РНК катализирует образование пептидной связи между последней аминокислотой растущего пептида и аминокислотой, присоединённой к тРНК, позиционируя атомы азота и углерода в положении, благоприятном для прохождения реакции. Ферменты аминоацил-тРНК-синтетазы присоединяют аминокислоты к их тРНК. Третья и последняя стадия трансляции, терминация, происходит при достижении рибосомой стоп-кодона, после чего белковые факторы терминации гидролизуют последнюю тРНК от белка, прекращая его синтез. Таким образом, в рибосомах белки всегда синтезируются от N- к C-концу.

    ...

    Подобные документы

      Научное определение жизни по Ф. Энгельсу. Молекулярно-генетический, организменный, популяционно-видовой уровень организации жизни. Прокариоты как одноклеточные доядерные организмы. Строение метафазной хромосомы. Уровни упаковки генетического материала.

      реферат , добавлен 29.05.2013

      Молекулярно-генетический уровень организации живого. Схема строения ДНК. Экспрессия гена как процесс реализации информации, закодированной в нем. Центральная догма молекулярной биологии. Транскрипционный аппарат клетки. Схемы транскрипции и сплайсинга.

      презентация , добавлен 21.02.2014

      Изучение химических основ наследственности. Характеристика строения, функций и процесса репликации рибонуклеиновой и дезоксирибонуклеиновой кислот. Рассмотрение особенностей распределение генов. Ознакомление с основными свойствами генетического кода.

      контрольная работа , добавлен 30.07.2010

      Анализ молекулярного, клеточного, тканевого, органного, организменного, популяционно-видового, биогеоценотического и биосферного уровней жизни. Изучение строения и функционирования тканей. Исследование генетических и экологических особенностей популяций.

      презентация , добавлен 11.09.2016

      Сущность и значение митоза - процесса распределения скопированных хромосом между дочерними клетками. Общая характеристика основных стадий митоза – профазы, метафазы, анафазы и телофазы, а также описание особенностей разделения клеточных хромосом в них.

      презентация , добавлен 04.12.2010

      Изучение процесса митоза как непрямого деления клетки и распространенного способа репродукции эукариотических клеток, его биологическое значение. Мейоз как редукционное деление клетки. Интерфаза, профаза, метафаза, анафаза и телофаза мейоза и митоза.

      презентация , добавлен 21.02.2013

      Система зашифровки наследственной информации в молекулах нуклеиновых кислот в виде генетического кода. Сущность процессов деления клеток: митоза и мейоза, их фазы. Передача генетической информации. Строение хромосом ДНК, РНК. Хромосомные заболевания.

      контрольная работа , добавлен 23.04.2013

      Сущность клеточного цикла - периода жизни клетки от одного деления до другого или от деления до смерти. Биологическое значение митоза, его основные регуляторные механизмы. Два периода митотического деления. Схема активации циклинзависимой киназы.

      презентация , добавлен 28.10.2014

      Клеточный цикл как период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или гибели. Принципы и методы его регуляции. Этапы и биологическое значение митоза, мейоза, обоснование данных процессов.

      презентация , добавлен 07.12.2014

      Элементарная генетическая и структурно-функциональная биологическая система. Клеточная теория. Типы клеточной организации. Особенности строения прокариотической клетки. Принципы организации эукариотической клетки. Наследственный аппарат клеток.

    В ХХ веке установили пять уровней организации жизни: молекулярно–генетический, онтогенетический, популярно–видовой, экосистемный и биосферный.Выяснения феномена жизни на каждом уровне является один из основных задач биологии.

    Молекулярно–генетический уровень – это уровень организации живых систем, состоящий из белков и нуклеиновых кислот. На этом уровне элементарной единицей организма являются гены. Здесь биология изучает механизмы передачи генной информации, наследственности и изменчивости.

    В живых организмах наиболее распространены шесть химических элементов-органогенов : углерод, азот, водород, кислород, фосфор и сера. С участием этих элементов, в ходе химической эволюции возникли гигантские биополимеры : углеводы, белки, липиды и нуклеиновые кислоты. Эти макромолекулы являются основой живых организмов. Мономерами этих макромолекул являются: моносахариды, аминокислоты, жирная кислота и нуклеотиды.

    Белки и нуклеиновые кислоты являются «информационными » макромолекулами, т.к. их свойства зависят от последовательности соединения 20 аминокислот и 4 нуклеотидов. Углеводы и липиды играют роль резерва энергии и строительного материала. На долю белков приходится свыше 50% общей сухой массы клеток.

    Генетическаяинформация организма хранится в ДНК. Она контролирует почти все биологические процессы, протекающие в организме. Белки и нуклеиновые кислоты обладают свойством молекулярной асимметрии (молекулярной хиральностью). Хиральность (греч. cheir – рука) проявляется в том, что белки вращают плоскость поляризации света влево , а нуклеиновые кислоты – вправо . Хиральность заключается в их асимметрии со своим зеркальным отражением, как у правой и левой руки, отсюда берется название.

    Молекулы ДНК вместе с белками образуют вещество хромосом. Доказательство генетической роли ДНК было получено, в 1944 г., ученым О. Эйвери, в опыте на бактериях. В 1953 г., американский биохимик Джеймс Уотсон и английский биофизик Френсис Крик раскрыли структуру молекулы ДНК. Они показали, что ДНК состоит из двух нитей, закрученных в двойную спираль. ДНК содержит 10 ÷ 25 тысяч нуклеотидов, а РНК – от 4 до 6 тысяч.

    В 1941 г., американские ученые Дж. Бидл и Э. Теймут установили, что синтез белков зависит от состояния генов ДНК. Ген – участок молекулыДНК, состоящий из сотни нуклеотидов. Тогда появились высказывания: один ген – один белок. Всю совокупность генов организма называют геномом . Число генов в организме человека составляет около 50 ÷ 100 тысяч , а весь геном человека содержит более 3 миллиардов нуклеотидных пар . Гены кодируют синтез белков.

    В 1954г физик-теоретик Георгий Гамов расшифровал генетический код. Он установил, что для кодирования одной аминокислоты используется сочетание из трех нуклеотидов ДНК. Оно является элементарной единицей наследственности, кодирующей одну аминокислоту, и получило название кодон (триплет). В 1961 г. гипотеза Гамова была на опыте, подтверждена Криком.

    Клеточный органоид рибосома «читает » информацию, содержащуюся в и-РНК, и в соответствии с ним синтезирует белок . Кодоны – триплеты состоят из трех нуклеотидов, например, АЦГ, АГЦ, ГГГ и другие. Полное число таких триплетов составляет 64. Из них три триплета являются стоп-сигналами, а 61 триплет кодирует 20 аминокислот. Белок, состоящий из 200 аминокислот, кодируется 200 кодонами, т.е. 600 нуклеотидами в и-РНК, и 600 парами нуклеотидов в ДНК. Это и есть размер одного гена. Информация в ДНК пишется, при помощи нуклеотидов, в виде: А-Ц-А-Т-Т-Г-А-Г-А-Т-∙∙∙∙∙∙. В таком тексте содержится информация, определяющая специфику каждого организма.

    Генетический код универсален, т.к. одинаков для всех живых организмов. Это свидетельствует о биохимическом единстве жизни, т.е. происхождении жизни на Земле от единого предка. Генетический код уникален , т.к. он кодирует только одну аминокислоту.


    Уровни организации органического мира – дискретные состояния биологических систем, характеризующиеся соподчиненностью, взаимосвязанностью, специфическими закономерностями.

    Структурные уровни организации жизни чрезвычайно многообразны, но основными являются молекулярный, клеточный, онтогенетический, популяционно-видовой, бигиоценотический и биосферный.

    1. Молекулярно-генетический уровень жизни. Важнейшими задачами биологии на этом этапе является изучение механизмов передачи генной информации, наследственности и изменчивости.

    Существует несколько механизмов изменчивости на молекулярном уровне. Важнейшим из них является механизм мутации генов – непосредственное преобразование самих генов под воздействием внешних факторов. Факторами, вызывающими мутацию, являются: радиация, токсические химические соединения, вирусы.

    Еще один механизм изменчивости – рекомбинация генов. Такой процесс имеет место при половом размножении у высших организмов. При этом не происходит изменения общего объема генетической информации.

    Еще один механизм изменчивости был открыт лишь в 1950 –е гг. Это – неклассическая рекомбинация генов, при котором происходит общее увеличение объема генетической информации за счет включения в геном клетки новых генетических элементов. Чаще всего эти элементы привносятся в клетку вирусами.

    2. Клеточный уровень. Сегодня наукой достоверно установлено, что наименьшей самостоятельной единицей строения, функционирования и развития живого организма является клетка, которая представляет собой элементарную биологическую систему, способную к самообновлению, самовоспроизведению и развитию. Цитология – наука, изучающая живую клетку, ее строение, функционирование как элементарной живой системы, исследует функции отдельных клеточных компонентов, процесс воспроизводства клеток, приспособление к условиям среды и др. Также цитология исследует особенности специализированных клеток, становление их особых функций и развитие специфических клеточных структур. Таким образом, современная цитология была названа физиологией клетки.

    Значительным продвижением в изучении клеток произошло в начале 19 века, было открыто и описано клеточное ядро. На основании этих исследований и была создана клеточная теория, ставшая величайшим событием в биологии 19 в. Именно эта теория послужила фундаментом для развития эмбриологии, физиологии, теории эволюции.

    Важнейшая часть всех клеток – ядро, которое хранит и воспроизводит генетическую информацию, регулирует процессы обмена веществ в клетке.

    Все клетки делятся на две группы:

    · Прокариоты – клетки, лишенные ядра

    · Эукариоты – клетки содержащие ядра

    Изучая живую клетку, ученые обратили внимание на существование двух основных типов ее питания, что позволило все организмы разделить на два типа:

    · Автотрофные – сами производят необходимые им питательные вещества

    · Гетеротрофные – не могут обходиться без органической пищи.

    Позднее были уточнены такие важные факторы, как способность организмов синтезировать необходимые вещества (витамины, гормоны), обеспечивать себя энергией, зависимость от экологической среды и др. Таким образом, сложный и дифференцированный характер связей свидетельствует о необходимости системного подхода к изучению жизни и на онтогенетическом уровне.

    3. Онтогенетический уровень. Многоклеточные организмы. Этот уровень возник в результате формирования живых организмов. Основной единицей жизни выступает отдельная особь, а элементарным явлением – онтогенез. Изучением функционирования и развития многоклеточных живых организмов занимается физиология. Эта наука рассматривает механизмы действия различных функций живого организма, их связь между собой, регуляцию и приспособление к внешней среде, происхождение и становление в процессе эволюции и индивидуального развития особи. По сути дела это и есть процесс онтогенеза – развитие организма от рождения до смерти. При этом происходит рост, перемещение отдельных структур, дифференциация и усложнение организма.

    Все многоклеточные организмы состоят из органов и тканей. Ткани – это группа физически объединенных клеток и межклеточных веществ для выполнения определенных функций. Их изучение является предметом гистологии.

    Органы – это относительно крупные функциональные единицы, которые объединяют различные ткани в те или иные физиологические комплексы. В свою очередь органы входят в состав более крупных единиц – систем организма. Среди них выделяют нервную, пищеварительную, сердечнососудистую, дыхательную и другие системы. Внутренние органы есть только у животных.

    4. Популяционно-биоценотический уровень. Это надорганизменный уровень жизни, основной единицей которого является популяция. В отличии от популяции видом называется совокупность особей, сходных по строению и физиологическим свойствам, имеющих общее происхождение, могущих свободно скрещиваться и давать плодовитое потомство. Вид существует только через популяции, представляющие генетически открытые системы. Изучением популяций занимается популяционная биология.

    Термин "популяция" был введен одним из основоположником генетики В. Иогансеном, который назвал так генетически неоднородную совокупность организмов. Позднее популяция стала считаться целостной системой, непрерывно взаимодействующей с окружающей средой. Именно популяции являются теми реальными системами, через которые существуют виды живых организмов.

    Популяции – генетически открытые системы, так как изоляция популяций не абсолютна и периодически не бывает возможным обмен генетической информацией. Именно популяции выступают в качестве элементарных единиц эволюции, изменения их генофонда ведут к появлению новых видов.

    Популяции, способны к самостоятельному существованию и трансформации, объединяются в совокупности следующего надорганизменного уровня – биоценозы. Биоценоз – совокупность популяций, проживающих на определенной территории.

    Биоценоз представляет собой закрытую для чужих популяций систему, для составляющих его популяций – это открытая система.

    5. Биогеоцетонический уровень. Биогеоценоз – устойчивая система, которая может существовать на протяжении длительного времени. Равновесие в живой системе динамично, т.е. представляет собой постоянное движение вокруг определенной точки устойчивости. Для ее стабильного функционирования необходимо наличие обратных связей между ее управляющей и исполняющей подсистемами. Такой способ поддержания динамического равновесия между различными элементами биогеоценоза, вызвано массовым размножением одних видов и сокращением или исчезновением других, приводящее к изменению качества окружающей среды, называют экологической катастрофой.

    Биогеоценоз – это целостная саморегулирующаяся система, в которой выделяется несколько типов подсистем. Первичные системы – продуценты, непосредственно перерабатывающие неживую материю; консументы – вторичный уровень, на котором вещество и энергия получаются за счет использования продуцентов; затем идут консументы второго порядка. Также существуют падальщики и редуценты.

    Через эти уровни в биогеоценозе проходит круговорот веществ: жизнь участвует в использовании, переработки и восстановлении различных структур. В биогеоценозе – однонаправленный энергетический поток. Это делает его незамкнутой системой, непрерывно связанной с соседними биогеоценозами.

    Саморегуляция биогеоценлзов протекает тем успешнее, чем разнообразнее количество составляющих его элементов. От многообразия его компонентов зависит и устойчивость биогеоценозов. Выпадение одного или нескольких компонентов может привести к необратимому нарушению равновесия и гибели его как целостной системы.

    6. Биосферный уровень. Это наивысший уровень организации жизни, охватывающий все явления жизни на нашей планете. Биосфера – это живое вещество планеты и преобразованная им окружающая среда. Биологический обмен веществ – это фактор, который объединяет все другие уровни организации жизни в одну биосферу. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов, обитающих на Земле. Таким образом, биосфера является единой экологической системой. Изучение функционирования этой системы, ее строения и функций – важнейшая задача биологии на этом уровне жизни. Занимаются изучением этих проблем экология, биоценология и биогеохимия.

    Разработка учения о биосфере неразрывно связана с именем выдающегося российского ученого В.И. Вернадского. Именно ему удалось доказать связь органического мира нашей планеты, выступающего в виде единого нераздельного целого, с геологическими процессами на Земле. Вернадский открыл и изучил биогеохимические функции живого вещества.